Page 1 Next

Displaying 1 – 20 of 72

Showing per page

A non elliptic spectral problem related to the analysis of superconducting micro-strip lines

Anne-Sophie Bonnet-Bendhia, Karim Ramdani (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the spectral analysis of a non elliptic operator A , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator A has been derived, we determine its continuous spectrum. Then, we show that A is unbounded from below and that it has a sequence of negative eigenvalues tending to - . Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some conditions...

A non elliptic spectral problem related to the analysis of superconducting micro-strip lines

Anne-Sophie Bonnet-Bendhia, Karim Ramdani (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the spectral analysis of a non elliptic operator A , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator A has been derived, we determine its continuous spectrum. Then, we show that A is unbounded from below and that it has a sequence of negative eigenvalues tending to -∞. Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some...

A numerical perspective on Hartree−Fock−Bogoliubov theory

Mathieu Lewin, Séverine Paul (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan)...

An upwinding mixed finite element method for a mean field model of superconducting vortices

Zhiming Chen, Qiang Du (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we construct a combined upwinding and mixed finite element method for the numerical solution of a two-dimensional mean field model of superconducting vortices. An advantage of our method is that it works for any unstructured regular triangulation. A simple convergence analysis is given without resorting to the discrete maximum principle. Numerical examples are also presented.

Bulk superconductivity in Type II superconductors near the second critical field

Soren Fournais, Bernard Helffer (2010)

Journal of the European Mathematical Society

We consider superconductors of Type II near the transition from the ‘bulk superconducting’ to the ‘surface superconducting’ state. We prove a new L estimate on the order parameter in the bulk, i.e. away from the boundary. This solves an open problem posed by Aftalion and Serfaty [AS].

Div-curl lemma revisited: Applications in electromagnetism

Marián Slodička, Ján Jr. Buša (2010)

Kybernetika

Two new time-dependent versions of div-curl results in a bounded domain Ω 3 are presented. We study a limit of the product v k w k , where the sequences v k and w k belong to Ł 2 ( Ω ) . In Theorem 2.1 we assume that × v k is bounded in the L p -norm and · w k is controlled in the L r -norm. In Theorem 2.2 we suppose that × w k is bounded in the L p -norm and · w k is controlled in the L r -norm. The time derivative of w k is bounded in both cases in the norm of - 1 ( Ω ) . The convergence (in the sense of distributions) of v k w k to the product v w of weak limits...

Dynamical instability of symmetric vortices.

Luis Almeida, Yan Guo (2001)

Revista Matemática Iberoamericana

Using the Maxwell-Higgs model, we prove that linearly unstable symmetric vortices in the Ginzburg-Landau theory are dynamically unstable in the H1 norm (which is the natural norm for the problem).In this work we study the dynamic instability of the radial solutions of the Ginzburg-Landau equations in R2 (...)

Dynamique des points vortex dans une équation de Ginzburg-Landau complexe

Evelyne Miot (2009/2010)

Séminaire Équations aux dérivées partielles

On considère une équation de Ginzburg-Landau complexe dans le plan. On étudie un régime asymptotique à petit paramètre dans lequel les solutions comportent des singularités ponctuelles, appelées points vortex, et on détermine un système d’équations différentielles ordinaires du premier ordre décrivant la dynamique de ces points jusqu’au premier temps de collision.

Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity

Junichi Aramaki (2010)

Archivum Mathematicum

We study the boundedness of the Hausdorff measure of the singular set of any solution for a semi-linear elliptic equation in general dimensional Euclidean space n . In our previous paper, we have clarified the structures of the nodal set and singular set of a solution for the semi-linear elliptic equation. In particular, we showed that the singular set is ( n - 2 ) -rectifiable. In this paper, we shall show that under some additive smoothness assumptions, the ( n - 2 ) -dimensional Hausdorff measure of singular set...

Currently displaying 1 – 20 of 72

Page 1 Next