A note on fusion Banach frames
Archivum Mathematicum (2010)
- Volume: 046, Issue: 3, page 203-209
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKaushik, S. K., and Kumar, Varinder. "A note on fusion Banach frames." Archivum Mathematicum 046.3 (2010): 203-209. <http://eudml.org/doc/116483>.
@article{Kaushik2010,
abstract = {For a fusion Banach frame $(\lbrace G_n, v_n\rbrace , S)$ for a Banach space $E$, if $(\lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is a fusion Banach frame for $E^*$, then $(\lbrace G_n, v_n\rbrace , S; \lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is called a fusion bi-Banach frame for $E$. It is proved that if $E$ has an atomic decomposition, then $E$ also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given.},
author = {Kaushik, S. K., Kumar, Varinder},
journal = {Archivum Mathematicum},
keywords = {atomic decompositions; fusion Banach frames; fusion bi-Banach frames; atomic decomposition; fusion Banach frame; fusion bi-Banach frame},
language = {eng},
number = {3},
pages = {203-209},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on fusion Banach frames},
url = {http://eudml.org/doc/116483},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Kaushik, S. K.
AU - Kumar, Varinder
TI - A note on fusion Banach frames
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 3
SP - 203
EP - 209
AB - For a fusion Banach frame $(\lbrace G_n, v_n\rbrace , S)$ for a Banach space $E$, if $(\lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is a fusion Banach frame for $E^*$, then $(\lbrace G_n, v_n\rbrace , S; \lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is called a fusion bi-Banach frame for $E$. It is proved that if $E$ has an atomic decomposition, then $E$ also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given.
LA - eng
KW - atomic decompositions; fusion Banach frames; fusion bi-Banach frames; atomic decomposition; fusion Banach frame; fusion bi-Banach frame
UR - http://eudml.org/doc/116483
ER -
References
top- Benedetto, J. J., Fickus, M., 10.1023/A:1021323312367, Adv. Comput. Math. 18 (2–4) (2003), 357–385. (2003) Zbl1028.42022MR1968126DOI10.1023/A:1021323312367
- Casazza, P. G., Custom Building finite frames, Wavelets, Frames and Operator Theory (Heil, C., Jorgensen, P. E. T., Larson, D. R., eds.), vol. 345, Contemp. Math., 2004, pp. 81–86. (2004) Zbl1082.42024MR2066822
- Christensen, O., An Introduction to Frames and Reisz Bases, Birkhäuser, 2002. (2002)
- Daubechies, I., Grossmann, A., Meyer, Y., 10.1063/1.527388, J. Math. Phys. 27 (1986), 1271–1283. (1986) MR0836025DOI10.1063/1.527388
- Duffin, R. J., Schaeffer, A. C., 10.1090/S0002-9947-1952-0047179-6, Trans. Amer. Math. Soc. 72 (1952), 341–366. (1952) MR0047179DOI10.1090/S0002-9947-1952-0047179-6
- Feichtinger, H. G., Gröchenig, K., A unified approach to atomic decompositons via integrable group representations, Proc. Conf. Function Spaces and Applications, Lecture Notes in Math. 1302, Berlin-Heidelberg-New York, Springer, 1988, pp. 52–73. (1988) MR0942257
- Gröchenig, K., 10.1007/BF01321715, Monatsh. Math. 112 (1991), 1–41. (1991) MR1122103DOI10.1007/BF01321715
- Jain, P. K., Kaushik, S. K., Gupta, N., 10.1017/S0004972708000889, Bull. Austral. Math. Soc. 78 (2008), 335–342. (2008) Zbl1214.42060MR2466869DOI10.1017/S0004972708000889
- Jain, P. K., Kaushik, S. K., Kumar, V., 10.1142/S0219691310003481, Int. J. Wavelets Multiresolut. Inf. Process. 8 (2) (2010), 243–252. (2010) MR2651164DOI10.1142/S0219691310003481
- Jain, P. K., Kaushik, S. K., Vashisht, L. K., 10.4171/ZAA/1217, Z. Anal. Anwendungen 23 (4) (2004), 713–720. (2004) Zbl1059.42024MR2110399DOI10.4171/ZAA/1217
- Jain, P. K., Kaushik, S. K., Vashisht, L. K., On Banach frames, Indian J. Pure Appl. Math. 37 (5) (2006), 265–272. (2006) Zbl1125.46013MR2271627
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.