Transversal biwave maps

Yuan-Jen Chiang; Robert A. Wolak

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 3, page 211-226
  • ISSN: 0044-8753

Abstract

top
In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if f is a transversal biwave map satisfying certain condition, then f is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.

How to cite

top

Chiang, Yuan-Jen, and Wolak, Robert A.. "Transversal biwave maps." Archivum Mathematicum 046.3 (2010): 211-226. <http://eudml.org/doc/116484>.

@article{Chiang2010,
abstract = {In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if $f$ is a transversal biwave map satisfying certain condition, then $f$ is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.},
author = {Chiang, Yuan-Jen, Wolak, Robert A.},
journal = {Archivum Mathematicum},
keywords = {transversal bi-energy; transversal biwave field; transversal biwave map; transversal bi-energy; transversal biwave field; transversal biwave map},
language = {eng},
number = {3},
pages = {211-226},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Transversal biwave maps},
url = {http://eudml.org/doc/116484},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Chiang, Yuan-Jen
AU - Wolak, Robert A.
TI - Transversal biwave maps
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 3
SP - 211
EP - 226
AB - In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if $f$ is a transversal biwave map satisfying certain condition, then $f$ is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.
LA - eng
KW - transversal bi-energy; transversal biwave field; transversal biwave map; transversal bi-energy; transversal biwave field; transversal biwave map
UR - http://eudml.org/doc/116484
ER -

References

top
  1. Caddeo, R., Montaldo, S., Oniciuc, C., 10.1142/S0129167X01001027, Internat. J. Math. 12 (8) (2001), 867–876. (2001) MR1863283DOI10.1142/S0129167X01001027
  2. Caddeo, R., Montaldo, S., Piu, P., Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group, Rend. Sem. Mat. Univ. Politec. Torino 62 (3) (2004), 265–278. (2004) MR2129448
  3. Chang, Sun-Yung A., Wang, L., Yang, P. C., 10.1002/(SICI)1097-0312(199909)52:9<1099::AID-CPA3>3.0.CO;2-O, Comm. Pure Appl. Math. 52 (9) (1999), 1099–1111. (1999) MR1692152DOI10.1002/(SICI)1097-0312(199909)52:9<1099::AID-CPA3>3.0.CO;2-O
  4. Chiang, Y. J., 10.1155/2009/104274, Internat. J. Math. Math. Sci. Article ID 104274 (2009), 1–14. (2009) Zbl1169.53336MR2515931DOI10.1155/2009/104274
  5. Chiang, Y. J., Sun, H., 2-harmonic totally real submanifolds in a complex projective space, Bull. Inst. Math. Acad. Sinica 27 (2) (1999), 99–107. (1999) Zbl0960.53036MR1697219
  6. Chiang, Y. J., Sun, H., 10.1155/S0161171201006731, Internat. J. Math. Math. Sci. 27 (2001), 477–484. (2001) Zbl1012.58012MR1869649DOI10.1155/S0161171201006731
  7. Chiang, Y. J., Wolak, R., 10.1142/S0129167X08004972, Internat. J. Math. 19 (9) (2008), 1–16. (2008) Zbl1160.53012MR2446510DOI10.1142/S0129167X08004972
  8. Chiang, Y. J., Yang, Y. H., 10.1016/j.geomphys.2007.09.003, J. Geom. Phys. 57 (2007), 2521–2532. (2007) Zbl1134.58006MR2369837DOI10.1016/j.geomphys.2007.09.003
  9. Eells, J., Lemaire, L., 10.1112/blms/10.1.1, Bull. London Math. Soc. 10 (1978), 1–68. (1978) Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
  10. Eells, J., Lemaire, L., 10.1112/blms/20.5.385, Bull. London Math. Soc. 20 (1988), 385–524. (1988) Zbl0669.58009MR0956352DOI10.1112/blms/20.5.385
  11. Eells, J., Sampson, J. H., 10.2307/2373037, Amer. J. Math. 86 (1964), 109–160. (1964) MR0164306DOI10.2307/2373037
  12. Eells, J., Verjovsky, A., Harmonic and Riemannian foliations, Bol. Soc. Mat. Mexicana (3) 4 (1998), 1–12. (1998) Zbl0905.57019MR1625589
  13. Evans, L. C., Partial Differential Equations, vol. 19, Grad. Stud. Math., 1998. (1998) Zbl0902.35002
  14. Hilbert, D., 10.1007/BF01448427, Math. Ann. 92 (1924), 1–32. (1924) MR1512197DOI10.1007/BF01448427
  15. Jiang, G. Y., 2-harmonic maps between Riemannian manifolds, Annals of Math., China 7A (4) (1986), 389–402. (1986) MR0886529
  16. Jiang, G. Y., The 2-harmonic isometric immersions between Riemannian manifolds, Annals of Math., China 7A (2) (1986), 130–144. (1986) MR0858581
  17. Jiang, G. Y., the conservation law of 2-harmonic maps between Riemannian manifolds, Acta Math. Sinica 30 (2) (1987), 220–225. (1987) MR0891928
  18. Kacimi, A. El, Gomez, E. Gallego, Foliated harmonic maps, Illinois J. Math. 40 (1996), 115–122. (1996) MR1386316
  19. Klainerman, S., Machedon, M., 10.1215/S0012-7094-95-08109-5, Duke Math. J. 81 (1995), 99–133. (1995) Zbl0909.35094MR1381973DOI10.1215/S0012-7094-95-08109-5
  20. Klainerman, S., Machedon, M., On the optimal local regularity for gauge fields theories, Differential Integral Equations 10 (6) (1997), 1019–1030. (1997) MR1608017
  21. Konderak, J. J., Wolak, R., 10.1093/qmath/hag019, Quart. J. Math. Oxford Ser. (2) 54 (Part 3) (2003), 335–354. (2003) Zbl1059.53051MR2013142DOI10.1093/qmath/hag019
  22. Konderak, J. J., Wolak, R., Some remarks on transversally harmonic maps, Glasgow J. Math. 50 (1) (2008), 1–16. (2008) Zbl1138.53025MR2381726
  23. Lopez, J. A., Masa, X. M., 10.1016/j.topol.2007.12.001, Topology Appl. 155 (2008), 544–604. (2008) Zbl1147.57025MR2388956DOI10.1016/j.topol.2007.12.001
  24. Loubeau, E., Oniciuc, C., 10.1090/S0002-9947-07-03934-7, Trans. Amer. Math. Soc. 359 (11) (2007), 5239–5256. (2007) Zbl1124.58009MR2327029DOI10.1090/S0002-9947-07-03934-7
  25. Molino, P., Riemannian Foliations, Birkhauser, Bassel, 1988. (1988) Zbl0824.53028MR0932463
  26. Montaldo, S., Oniciuc, C., A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1–22. (2006) Zbl1140.58004MR2301373
  27. Nahmod, A., Stefanov, A., Uhlenbeck, K., On the well-posedness of the wave map problem in high dimensions, Comm. Anal. Geom. 11 (1) (2003), 49–83. (2003) Zbl1085.58022MR2016196
  28. O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983. (1983) MR0719023
  29. Shatah, J., Struwe, M., Geometric wave equations, Courant Lecture Notes in Math., 2 (2000), viii+153 pp. (2000) Zbl1051.35500MR1674843
  30. Shatah, J., Struwe, M., 10.1155/S1073792802109044, Int. Math. Res. Not. 11 (2002), 555–571. (2002) Zbl1024.58014MR1890048DOI10.1155/S1073792802109044
  31. Tao, T., Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Internat. Math. Res. Notices 6 (2001), 299–328. (2001) Zbl0983.35080MR1820329
  32. Tao, T., 10.1007/PL00005588, Comm. Math. Phys. 224 (2001), 443–544. (2001) MR1869874DOI10.1007/PL00005588
  33. Tataru, D., 10.1090/S0273-0979-04-01005-5, Bull. Amer. Math. Soc. 41 (2004), 185–204. (2004) MR2043751DOI10.1090/S0273-0979-04-01005-5
  34. Tataru, D., 10.1353/ajm.2005.0014, Amer. J. Math. 127 (5) (2005), 293–377. (2005) MR2130618DOI10.1353/ajm.2005.0014
  35. Tondeur, P., Geometry of Foliation, Birkhauser, Bassel, 1997. (1997) MR1456994
  36. Wang, C., 10.1007/s00209-003-0620-1, Math. Z. 247 (2004), 65–87. (2004) MR2054520DOI10.1007/s00209-003-0620-1
  37. Wolak, R., 10.5802/afst.681, Ann. Fac. Sci. Toulouse Math. (6) 10 (1989), 337–360. (1989) Zbl0698.57007MR1425491DOI10.5802/afst.681

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.