Transversal biwave maps
Yuan-Jen Chiang; Robert A. Wolak
Archivum Mathematicum (2010)
- Volume: 046, Issue: 3, page 211-226
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topChiang, Yuan-Jen, and Wolak, Robert A.. "Transversal biwave maps." Archivum Mathematicum 046.3 (2010): 211-226. <http://eudml.org/doc/116484>.
@article{Chiang2010,
abstract = {In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if $f$ is a transversal biwave map satisfying certain condition, then $f$ is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.},
author = {Chiang, Yuan-Jen, Wolak, Robert A.},
journal = {Archivum Mathematicum},
keywords = {transversal bi-energy; transversal biwave field; transversal biwave map; transversal bi-energy; transversal biwave field; transversal biwave map},
language = {eng},
number = {3},
pages = {211-226},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Transversal biwave maps},
url = {http://eudml.org/doc/116484},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Chiang, Yuan-Jen
AU - Wolak, Robert A.
TI - Transversal biwave maps
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 3
SP - 211
EP - 226
AB - In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if $f$ is a transversal biwave map satisfying certain condition, then $f$ is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.
LA - eng
KW - transversal bi-energy; transversal biwave field; transversal biwave map; transversal bi-energy; transversal biwave field; transversal biwave map
UR - http://eudml.org/doc/116484
ER -
References
top- Caddeo, R., Montaldo, S., Oniciuc, C., 10.1142/S0129167X01001027, Internat. J. Math. 12 (8) (2001), 867–876. (2001) MR1863283DOI10.1142/S0129167X01001027
- Caddeo, R., Montaldo, S., Piu, P., Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group, Rend. Sem. Mat. Univ. Politec. Torino 62 (3) (2004), 265–278. (2004) MR2129448
- Chang, Sun-Yung A., Wang, L., Yang, P. C., 10.1002/(SICI)1097-0312(199909)52:9<1099::AID-CPA3>3.0.CO;2-O, Comm. Pure Appl. Math. 52 (9) (1999), 1099–1111. (1999) MR1692152DOI10.1002/(SICI)1097-0312(199909)52:9<1099::AID-CPA3>3.0.CO;2-O
- Chiang, Y. J., 10.1155/2009/104274, Internat. J. Math. Math. Sci. Article ID 104274 (2009), 1–14. (2009) Zbl1169.53336MR2515931DOI10.1155/2009/104274
- Chiang, Y. J., Sun, H., 2-harmonic totally real submanifolds in a complex projective space, Bull. Inst. Math. Acad. Sinica 27 (2) (1999), 99–107. (1999) Zbl0960.53036MR1697219
- Chiang, Y. J., Sun, H., 10.1155/S0161171201006731, Internat. J. Math. Math. Sci. 27 (2001), 477–484. (2001) Zbl1012.58012MR1869649DOI10.1155/S0161171201006731
- Chiang, Y. J., Wolak, R., 10.1142/S0129167X08004972, Internat. J. Math. 19 (9) (2008), 1–16. (2008) Zbl1160.53012MR2446510DOI10.1142/S0129167X08004972
- Chiang, Y. J., Yang, Y. H., 10.1016/j.geomphys.2007.09.003, J. Geom. Phys. 57 (2007), 2521–2532. (2007) Zbl1134.58006MR2369837DOI10.1016/j.geomphys.2007.09.003
- Eells, J., Lemaire, L., 10.1112/blms/10.1.1, Bull. London Math. Soc. 10 (1978), 1–68. (1978) Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
- Eells, J., Lemaire, L., 10.1112/blms/20.5.385, Bull. London Math. Soc. 20 (1988), 385–524. (1988) Zbl0669.58009MR0956352DOI10.1112/blms/20.5.385
- Eells, J., Sampson, J. H., 10.2307/2373037, Amer. J. Math. 86 (1964), 109–160. (1964) MR0164306DOI10.2307/2373037
- Eells, J., Verjovsky, A., Harmonic and Riemannian foliations, Bol. Soc. Mat. Mexicana (3) 4 (1998), 1–12. (1998) Zbl0905.57019MR1625589
- Evans, L. C., Partial Differential Equations, vol. 19, Grad. Stud. Math., 1998. (1998) Zbl0902.35002
- Hilbert, D., 10.1007/BF01448427, Math. Ann. 92 (1924), 1–32. (1924) MR1512197DOI10.1007/BF01448427
- Jiang, G. Y., 2-harmonic maps between Riemannian manifolds, Annals of Math., China 7A (4) (1986), 389–402. (1986) MR0886529
- Jiang, G. Y., The 2-harmonic isometric immersions between Riemannian manifolds, Annals of Math., China 7A (2) (1986), 130–144. (1986) MR0858581
- Jiang, G. Y., the conservation law of 2-harmonic maps between Riemannian manifolds, Acta Math. Sinica 30 (2) (1987), 220–225. (1987) MR0891928
- Kacimi, A. El, Gomez, E. Gallego, Foliated harmonic maps, Illinois J. Math. 40 (1996), 115–122. (1996) MR1386316
- Klainerman, S., Machedon, M., 10.1215/S0012-7094-95-08109-5, Duke Math. J. 81 (1995), 99–133. (1995) Zbl0909.35094MR1381973DOI10.1215/S0012-7094-95-08109-5
- Klainerman, S., Machedon, M., On the optimal local regularity for gauge fields theories, Differential Integral Equations 10 (6) (1997), 1019–1030. (1997) MR1608017
- Konderak, J. J., Wolak, R., 10.1093/qmath/hag019, Quart. J. Math. Oxford Ser. (2) 54 (Part 3) (2003), 335–354. (2003) Zbl1059.53051MR2013142DOI10.1093/qmath/hag019
- Konderak, J. J., Wolak, R., Some remarks on transversally harmonic maps, Glasgow J. Math. 50 (1) (2008), 1–16. (2008) Zbl1138.53025MR2381726
- Lopez, J. A., Masa, X. M., 10.1016/j.topol.2007.12.001, Topology Appl. 155 (2008), 544–604. (2008) Zbl1147.57025MR2388956DOI10.1016/j.topol.2007.12.001
- Loubeau, E., Oniciuc, C., 10.1090/S0002-9947-07-03934-7, Trans. Amer. Math. Soc. 359 (11) (2007), 5239–5256. (2007) Zbl1124.58009MR2327029DOI10.1090/S0002-9947-07-03934-7
- Molino, P., Riemannian Foliations, Birkhauser, Bassel, 1988. (1988) Zbl0824.53028MR0932463
- Montaldo, S., Oniciuc, C., A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1–22. (2006) Zbl1140.58004MR2301373
- Nahmod, A., Stefanov, A., Uhlenbeck, K., On the well-posedness of the wave map problem in high dimensions, Comm. Anal. Geom. 11 (1) (2003), 49–83. (2003) Zbl1085.58022MR2016196
- O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983. (1983) MR0719023
- Shatah, J., Struwe, M., Geometric wave equations, Courant Lecture Notes in Math., 2 (2000), viii+153 pp. (2000) Zbl1051.35500MR1674843
- Shatah, J., Struwe, M., 10.1155/S1073792802109044, Int. Math. Res. Not. 11 (2002), 555–571. (2002) Zbl1024.58014MR1890048DOI10.1155/S1073792802109044
- Tao, T., Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Internat. Math. Res. Notices 6 (2001), 299–328. (2001) Zbl0983.35080MR1820329
- Tao, T., 10.1007/PL00005588, Comm. Math. Phys. 224 (2001), 443–544. (2001) MR1869874DOI10.1007/PL00005588
- Tataru, D., 10.1090/S0273-0979-04-01005-5, Bull. Amer. Math. Soc. 41 (2004), 185–204. (2004) MR2043751DOI10.1090/S0273-0979-04-01005-5
- Tataru, D., 10.1353/ajm.2005.0014, Amer. J. Math. 127 (5) (2005), 293–377. (2005) MR2130618DOI10.1353/ajm.2005.0014
- Tondeur, P., Geometry of Foliation, Birkhauser, Bassel, 1997. (1997) MR1456994
- Wang, C., 10.1007/s00209-003-0620-1, Math. Z. 247 (2004), 65–87. (2004) MR2054520DOI10.1007/s00209-003-0620-1
- Wolak, R., 10.5802/afst.681, Ann. Fac. Sci. Toulouse Math. (6) 10 (1989), 337–360. (1989) Zbl0698.57007MR1425491DOI10.5802/afst.681
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.