Foliated and associated geometric structures on foliated manifolds

Robert A. Wolak

Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)

  • Volume: 10, Issue: 3, page 337-360
  • ISSN: 0240-2963

How to cite

top

Wolak, Robert A.. "Foliated and associated geometric structures on foliated manifolds." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.3 (1989): 337-360. <http://eudml.org/doc/73236>.

@article{Wolak1989,
author = {Wolak, Robert A.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {transverse structure; foliated structure; associated structure; geometric structures on foliated manifolds},
language = {eng},
number = {3},
pages = {337-360},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Foliated and associated geometric structures on foliated manifolds},
url = {http://eudml.org/doc/73236},
volume = {10},
year = {1989},
}

TY - JOUR
AU - Wolak, Robert A.
TI - Foliated and associated geometric structures on foliated manifolds
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 3
SP - 337
EP - 360
LA - eng
KW - transverse structure; foliated structure; associated structure; geometric structures on foliated manifolds
UR - http://eudml.org/doc/73236
ER -

References

top
  1. [1] Albert ( C.), Molino ( P.).— Pseudogroupes de Lie transitifs, Travaux en Cours, Hermann, Paris, 1984. Zbl0563.53027MR770061
  2. [2] Amores ( A.M.).—Vector fields of finite type G-structures, J. Diff. Geom.14, 1979, p. 1-6. Zbl0414.53030MR577874
  3. [3] Blumenthal ( R.A.).- Foliated manifolds with flat basic connections, J. Diff. Geom.16, 1981, p. 401-406. Zbl0466.57009MR654633
  4. [4] Blumenthal ( R.A.).— Basic connections with vanishing curvature and parallel torsion, Bull. Sci. math.106, 1982, p. 393-400. Zbl0508.57019MR688198
  5. [5] Blumenthal ( R.A.).—Riemannian foliations with parallel curvature, Nagoya Math. J.90, 1983, p. 145-153. Zbl0508.57020MR702257
  6. [6] Blumenthal ( R.A.).— Foliations with locally reductive normal bundle, Illinois J. Math.28, 1984, p. 691-702. Zbl0534.57018MR761999
  7. [7] Blumenthal ( R.A.). - Stability theorems for conformal foliations, Proc. A.M.S.91, 1984, p. 55-63. Zbl0514.57008MR744654
  8. [8] Blumenthal ( R.A.).— Cartan connections in foliated bundles, Michigan Math. J.31, 1984, p. 55-63. Zbl0579.53028MR736468
  9. [9] Blumenthal ( R.A.). - Submersions affines et feuilletages de variétés munies d'une connexion linéaire, C. R. Acad. Sc.Paris299, 1984, p. 1013-1015. Zbl0573.57012MR776854
  10. [10] Blumenthal ( R.A.). - Affine submersions, Ann. Glob. An. Geom.3, 1985, p. 275-287. Zbl0557.53014MR813133
  11. [11] Blumenthal ( R.A.). - Cartan submersions and Cartan foliations, Illinois J. Math.31,2, 1987, p. 327-343. Zbl0608.53027MR882118
  12. [12] Carrière ( Y.), Ghys ( E.).- Feuilletages totalement géodésiques, An. Acad. Brasil Ciênc.53, 1981, p. 427-432. Zbl0486.57013MR663239
  13. [13] Epstein ( D.B.A.).— Foliations with all leaves compact, Ann. Inst. Fourier26,1, 1976, p. 265-273. Zbl0313.57017MR420652
  14. [14] Goldman ( W.), Hirsch ( M.W.), Levitt ( G.).-Invariant measures for affine foliations, Proc. AMS86, 1982, p. 511-518. Zbl0534.57014MR671227
  15. [15] Haefliger ( A.).- Structures feuilletées et cohomologie à valeurs dans un faisceau de groupoïdes, Comm. Math. Helv.32, 1958, p. 248-329. Zbl0085.17303MR100269
  16. [16] Haefliger ( A.).- Pseudogroups of local isometries, Differential Geometry, L.A.Cordero ed., Proceedings Vth International Colloquium on Differential Geometry, Santiago de Compostela 1984, Pitman1985. Zbl0656.58042MR864868
  17. [17] Haefliger ( A.).— Leaves closures in Riemannian foliations, A fête of topology, Academic Press, Boston, MA, 1988, p. 3-32. Zbl0667.57012MR928394
  18. [18] Kamber ( F.W.), Tondeur ( Ph.). - Characteristic Classes and Foliated Bundles, SpringerLecture Notes in Math.493, 1975. Zbl0308.57011MR402773
  19. [19] Kamber ( F.W.), Tondeur ( Ph.). - G-foliations and their characteristic classes, Bull. A.M.S.84,6, 1978, p. 1086-1124. Zbl0405.57017MR508449
  20. [20] Kobayashi ( S.).—Transformation Groups in Differential Geometry, Springer, Berlin, 1972. Zbl0246.53031MR355886
  21. [21] Kobayashi ( S.), Nomizu ( K.).— Foundations of Differential Geometry, Interscience Publ., New York1963, 1969. Zbl0119.37502MR152974
  22. [22] Ledger ( A.Y.), Obata ( M.).- Compact Riemannian manifolds with essential groups of conformorphisms, Trans. A.M.S150, 1970, p. 645-651. Zbl0208.49902MR262971
  23. [23] Libermann ( P.). - Pfaffian systems and transverse differential geometry, Differential Geometry and Relativity, D.Reidel, 1976, p. 107-126. Zbl0369.58003MR448386
  24. [24] Molino ( P.). - Connexions et G-structures sur les variétés feuilletées, Bull. Sc. math.92, 1968, p. 59-63. Zbl0162.53702MR234490
  25. [25] Molino ( P.).— Propriétés cohomologiques et propriétés topologiques des feuilletages à connection transverse projetable, Topology12, 1973, p. 317-325. Zbl0269.57014MR353332
  26. [26] Molino ( P.).- Sur la géométrie transverse de feuilletages, Ann. Inst. Fourier25, 1975, p. 279-284. Zbl0301.57016MR391123
  27. [27] Molino ( P.). - Le problème d'équivalence pour les pseudogroupes de Lie, méthodes intrinsèques, Bull. Soc. Math. France108, 1980, p. 95-111. Zbl0446.58022MR603342
  28. [28] Molino ( P.).-Invariants structuraux des feuilletages, Bull. Sc. math.105, 1981, p. 337-347. Zbl0475.57009MR640146
  29. [29] Molino ( P.).- Riemannian Foliations, Progress in Math., Birkhäuser, 1988. Zbl0633.53001MR932463
  30. [30] Nomizu ( K.).— On local and global existence of Killing vector fields, Ann. of Math.72, 1960, p. 105-120. Zbl0093.35103MR119172
  31. [31] Ochai ( T.).—Geometry associated with semisimple flat homogeneous spaces, Trans. A.M.S.152, 1970, p. 159-193. Zbl0205.26004MR284936
  32. [32] Palais ( R.S.), Terng ( C.L.). - Natural bundles have finite order, Topology16, 1977, p. 271-277. Zbl0359.58004MR467787
  33. [33] Rasmussen ( O.H.).- Foliations with integrable transverse G-structures, J. Diff. Geom.16, 1981, p. 699-710. Zbl0495.53027MR661660
  34. [34] Rodriguez ( A.M.). - The first and second fundamental theorems of Lie for Lie pseudogroups, Amer. J. Math.84, 1962, p. 265-282. Zbl0192.12703MR147587
  35. [35] Sternberg ( S.).-An Introduction to Differential Geometry, Chelsea Publ.C. (second edition), New York1983. 
  36. [36] Takeuchi ( M.). - On foliations with the structure group of automorphisms of a geometric structure, J. Math. Soc. Japan32, 1980, p. 119-152. Zbl0413.57021MR554520
  37. [37] Thurston ( W.).— Topology of 3-Manifolds, Princeton. 
  38. [38] Wolf ( J.A.). - Spaces of Constant Curvature, Publish or Perish Inc., 1974. Zbl0281.53034MR343214
  39. [39] Wolak ( R.).—On ∇ - G-foliations, Suppl. Rend. Cir. Mat. Palermo6, 1984, p. 317-325. Zbl0567.57022MR782729
  40. [40] Wolak ( R.). - On G-foliations, Ann. Pol. Math.46, 1985, p. 329-341. MR841842
  41. [41] Wolak ( R.).—On transverse structures of foliations, Suppl. Rend. Cir. Mat. Palermo9, 1985, p. 227-243. Zbl0595.57023MR853144
  42. [42] Wolak ( R.).—Foliations admitting transverse systems of differential equations, Comp. Math.67, 1988, p. 89-101. Zbl0649.57027MR949272
  43. [43] Wolak ( R.). — Transverse completeness of foliated systems of ordinary differential equations, Proc. VIth Inter. Coll. on Differential Geometry, Santiago de Compostela 1988, ed. L. A. Cordero, Santiago de Compostela 1989. Zbl0693.58015MR1040852
  44. [44] Wolak ( R.). - G-foliations of finite type with all leaves compact, to be publ. in Publ. Mat. UAB, 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.