Module -amenability of Banach algebras
Archivum Mathematicum (2010)
- Volume: 046, Issue: 4, page 227-235
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBodaghi, Abasalt. "Module $(\varphi ,\psi )$-amenability of Banach algebras." Archivum Mathematicum 046.4 (2010): 227-235. <http://eudml.org/doc/116488>.
@article{Bodaghi2010,
abstract = {Let $S$ be an inverse semigroup with the set of idempotents $E$ and $S/\approx $ be an appropriate group homomorphic image of $S$. In this paper we find a one-to-one correspondence between two cohomology groups of the group algebra $\ell ^1(S)$ and the semigroup algebra $ \{\ell ^\{1\}\}(S/\approx )$ with coefficients in the same space. As a consequence, we prove that $S$ is amenable if and only if $S/\approx $ is amenable. This could be considered as the same result of Duncan and Namioka [5] with another method which asserts that the inverse semigroup $S$ is amenable if and only if the group homomorphic image $S/\sim $ is amenable, where $\sim $ is a congruence relation on $S$.},
author = {Bodaghi, Abasalt},
journal = {Archivum Mathematicum},
keywords = {Banach modules; module derivation; module amenability; inverse semigroup; Banach module; module derivation; module amenability; inverse semigroup},
language = {eng},
number = {4},
pages = {227-235},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Module $(\varphi ,\psi )$-amenability of Banach algebras},
url = {http://eudml.org/doc/116488},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Bodaghi, Abasalt
TI - Module $(\varphi ,\psi )$-amenability of Banach algebras
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 4
SP - 227
EP - 235
AB - Let $S$ be an inverse semigroup with the set of idempotents $E$ and $S/\approx $ be an appropriate group homomorphic image of $S$. In this paper we find a one-to-one correspondence between two cohomology groups of the group algebra $\ell ^1(S)$ and the semigroup algebra $ {\ell ^{1}}(S/\approx )$ with coefficients in the same space. As a consequence, we prove that $S$ is amenable if and only if $S/\approx $ is amenable. This could be considered as the same result of Duncan and Namioka [5] with another method which asserts that the inverse semigroup $S$ is amenable if and only if the group homomorphic image $S/\sim $ is amenable, where $\sim $ is a congruence relation on $S$.
LA - eng
KW - Banach modules; module derivation; module amenability; inverse semigroup; Banach module; module derivation; module amenability; inverse semigroup
UR - http://eudml.org/doc/116488
ER -
References
top- Amini, M., 10.1007/s00233-004-0107-3, Semigroup Forum 69 (2004), 243–254. (2004) Zbl1059.43001MR2081295DOI10.1007/s00233-004-0107-3
- Amini, M., Bodaghi, A., Bagha, D. Ebrahimi, 10.1007/s00233-010-9211-8, Semigroup Forum 80 (2010), 302–312. (2010) MR2601766DOI10.1007/s00233-010-9211-8
- Amioni, M., Corrigendum, Module amenability for semigroup algebras, Semigroup Forum 72 (2006), 493. (2006) MR2228544
- Dale, H. G., Banach Algebra and Automatic Continuity, Oxford university Press, 2000. (2000)
- Duncan, J., Namioka, I., Amenability of inverse semigroups and their semigroup algebra, Proc. Roy. Soc. Edinburgh Sect. A 80 (3–4) (1978), 309–321. (1978) MR0516230
- Howie, J. M., An Introduction to Semigroup Theory, London Academic Press, 1976. (1976) Zbl0355.20056MR0466355
- Johnson, B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972), iii+96 pp. (1972) Zbl0256.18014MR0374934
- Moslehian, M. S., Motlagh, A. N., Some notes on -amenability of Banach algebras, Stud. Univ. Babeş-Bolyai Math. 53 (3) (2008), 57–68. (2008) Zbl1199.46111MR2487108
- Munn, W. D., A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 41–48. (1961) Zbl0113.02403MR0153762
- Paterson, A. L. T., Groupoids, Inverse Semigroups, and Their Operator Algebras, Birkhäuser, Boston, 1999. (1999) Zbl0913.22001MR1724106
- Rezavand, R., Amini, M., Sattari, M. H., Bagh, D. Ebrahimi, 10.1007/s00233-008-9075-3, Semigroup Forum 77 (2008), 300–305. (2008) MR2443440DOI10.1007/s00233-008-9075-3
- Wilde, C., Argabright, L., 10.1090/S0002-9939-1967-0215064-9, Proc. Amer. Math. Soc. 18 (1967), 226–228. (1967) MR0215064DOI10.1090/S0002-9939-1967-0215064-9
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.