Generalization of the weak amenability on various Banach algebras

Madjid Eshaghi Gordji; Ali Jabbari; Abasalt Bodaghi

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 1, page 1-11
  • ISSN: 0862-7959

Abstract

top
The generalized notion of weak amenability, namely ( ϕ , ψ ) -weak amenability, where ϕ , ψ are continuous homomorphisms on a Banach algebra 𝒜 , was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the ( ϕ , ψ ) -weak amenability on the measure algebra M ( G ) , the group algebra L 1 ( G ) and the Segal algebra S 1 ( G ) , where G is a locally compact group, are studied. As a typical example, the ( ϕ , ψ ) -weak amenability of a special semigroup algebra is shown as well.

How to cite

top

Eshaghi Gordji, Madjid, Jabbari, Ali, and Bodaghi, Abasalt. "Generalization of the weak amenability on various Banach algebras." Mathematica Bohemica 144.1 (2019): 1-11. <http://eudml.org/doc/294721>.

@article{EshaghiGordji2019,
abstract = {The generalized notion of weak amenability, namely $(\varphi ,\psi )$-weak amenability, where $\varphi ,\psi $ are continuous homomorphisms on a Banach algebra $\{\mathcal \{A\}\}$, was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the $(\varphi ,\psi )$-weak amenability on the measure algebra $M(G)$, the group algebra $L^1(G)$ and the Segal algebra $S^1(G)$, where $G$ is a locally compact group, are studied. As a typical example, the $(\varphi ,\psi )$-weak amenability of a special semigroup algebra is shown as well.},
author = {Eshaghi Gordji, Madjid, Jabbari, Ali, Bodaghi, Abasalt},
journal = {Mathematica Bohemica},
keywords = {Banach algebra; $(\varphi ,\psi )$-derivation; group algebra; locally compact group; measure algebra; Segal algebra; weak amenability},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalization of the weak amenability on various Banach algebras},
url = {http://eudml.org/doc/294721},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Eshaghi Gordji, Madjid
AU - Jabbari, Ali
AU - Bodaghi, Abasalt
TI - Generalization of the weak amenability on various Banach algebras
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 1
SP - 1
EP - 11
AB - The generalized notion of weak amenability, namely $(\varphi ,\psi )$-weak amenability, where $\varphi ,\psi $ are continuous homomorphisms on a Banach algebra ${\mathcal {A}}$, was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the $(\varphi ,\psi )$-weak amenability on the measure algebra $M(G)$, the group algebra $L^1(G)$ and the Segal algebra $S^1(G)$, where $G$ is a locally compact group, are studied. As a typical example, the $(\varphi ,\psi )$-weak amenability of a special semigroup algebra is shown as well.
LA - eng
KW - Banach algebra; $(\varphi ,\psi )$-derivation; group algebra; locally compact group; measure algebra; Segal algebra; weak amenability
UR - http://eudml.org/doc/294721
ER -

References

top
  1. Bade, W. G., Jr., P. C. Curtis, Dales, H. G., 10.1093/plms/s3-55_2.359, Proc. Lond. Math. Soc., III. Ser. 55 (1987), 359-377. (1987) Zbl0634.46042MR0896225DOI10.1093/plms/s3-55_2.359
  2. Bodaghi, A., Module ( ϕ , ψ ) -amenability of Banach algeras, Arch. Math., Brno 46 (2010), 227-235. (2010) Zbl1240.43001MR2754062
  3. Bodaghi, A., Generalized notion of weak module amenability, Hacet. J. Math. Stat. 43 (2014), 85-95. (2014) Zbl1327.46047MR3185637
  4. Bodaghi, A., Gordji, M. Eshaghi, Medghalchi, A. R., 10.15352/bjma/1240336430, Banach J. Math. Anal. 3 (2009), 131-142. (2009) Zbl1163.46034MR2461753DOI10.15352/bjma/1240336430
  5. Bodaghi, A., Shojaee, B., A generalized notion of n -weak amenability, Math. Bohemica 139 (2014), 99-112. (2014) Zbl1340.46040MR3231432
  6. Dales, H. G., Ghahramani, F., Helemskii, A. Ya., 10.1112/S0024610702003381, J. Lond. Math. Soc., II. Ser. 66 (2002), 213-226. (2002) Zbl1015.43002MR1911870DOI10.1112/S0024610702003381
  7. Dales, H. G., Pandey, S. S., 10.1090/S0002-9939-99-05139-4, Proc. Am. Math. Soc. 128 (2000), 1419-1425. (2000) Zbl0952.43003MR1641681DOI10.1090/S0002-9939-99-05139-4
  8. Despić, M., Ghahramani,, F., 10.4153/CMB-1994-024-4, Can. Math. Bull. 37 (1994), 165-167. (1994) Zbl0813.43001MR1275699DOI10.4153/CMB-1994-024-4
  9. Ghahramani, F., Lau, A. T. M., 10.1017/S0305004102005960, Math. Proc. Camb. Philos. Soc. 133 (2002), 357-371. (2002) Zbl1010.46048MR1912407DOI10.1017/S0305004102005960
  10. Grønbæk, N., 10.4064/sm-94-2-149-162, Studia Math. 94 (1989), 149-162. (1989) Zbl0704.46030MR1025743DOI10.4064/sm-94-2-149-162
  11. Hewitt, E., Ross, K. A., 10.1007/978-1-4419-8638-2, Grundlehren der mathematischen Wissenschaften 115. A Series of Comprehensive Studies in Mathematics. Springer, Berlin (1979). (1979) Zbl0416.43001MR0551496DOI10.1007/978-1-4419-8638-2
  12. Johnson, B. E., Cohomology in Banach Algebras, Mem. Am. Math. Soc. 127. AMS, Providence (1972). (1972) Zbl0256.18014MR0374934
  13. Johnson, B. E., 10.1112/blms/23.3.281, Bull. Lond. Math. Soc. 23 (1991), 281-284. (1991) Zbl0757.43002MR1123339DOI10.1112/blms/23.3.281
  14. Lau, A. T. M., Loy, R. J., 10.1006/jfan.1996.3002, J. Funct. Anal. 145 (1997), 175-204. (1997) Zbl0890.46036MR1442165DOI10.1006/jfan.1996.3002
  15. Moslehian, M. S., Motlagh, A. N., Some notes on ( σ , τ ) -amenability of Banach algebras, Stud. Univ. Babeş-Bolyai, Math. 53 (2008), 57-68. (2008) Zbl1199.46111MR2487108
  16. Reiter, H., Stegeman, J. D., Classical Harmonic Analysis and Locally Compact Groups, London Mathematical Society Monographs. New Series 22. Clarendon Press, Oxford (2000). (2000) Zbl0965.43001MR1802924
  17. Zhang, Y., 10.4153/CMB-2001-050-7, Can. Math. Bull. 44 (2001), 504-508. (2001) Zbl1156.46306MR1863642DOI10.4153/CMB-2001-050-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.