An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid
Archivum Mathematicum (2010)
- Volume: 046, Issue: 5, page 363-376
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSikora, Martin. "An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid." Archivum Mathematicum 046.5 (2010): 363-376. <http://eudml.org/doc/116499>.
@article{Sikora2010,
abstract = {The Dirac equation for spinor-valued fields $f$ on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet $H^+$ of the hyperboloid. In particular, we derive an integral formula expressing the value of $f$ in a chosen point $p$ as an integral over a compact cycle given by the intersection of the null cone with $H^+$ in the Minkowski space $\{\mathbb \{M\}\}$.},
author = {Sikora, Martin},
journal = {Archivum Mathematicum},
keywords = {Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space; Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space},
language = {eng},
number = {5},
pages = {363-376},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid},
url = {http://eudml.org/doc/116499},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Sikora, Martin
TI - An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 5
SP - 363
EP - 376
AB - The Dirac equation for spinor-valued fields $f$ on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet $H^+$ of the hyperboloid. In particular, we derive an integral formula expressing the value of $f$ in a chosen point $p$ as an integral over a compact cycle given by the intersection of the null cone with $H^+$ in the Minkowski space ${\mathbb {M}}$.
LA - eng
KW - Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space; Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space
UR - http://eudml.org/doc/116499
ER -
References
top- Brackx, F., Delanghe, R., Sommen, F., Clifford analysis, Pitman Advanced Pub. Program, 1982. (1982) Zbl0529.30001MR0697564
- Bureš, J., Souček, V., The Penrose transform on isotropic Grassmannians, in 75 Years of Radon transform, Conf. Proc. Lecture Notes Math. Phys., 1994. (1994) MR1313925
- Delanghe, R., Lávička, R., Souček, V., On polynomial solutions of generalized Moisil-Theodoresco systems and Hodge-de Rham systems, arXiv:0908.0842, pp.11, 08 2009. (2009)
- Delanghe, R., Sommen, F., Souček, V., Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, vol. 53, Math. Appl., 1992. (1992) MR1169463
- Dodson, M., Souček, V., Leray residues applied to the solution of the Laplace and wave equations, Geometry seminars 1984 (Italian) (Bologna, 1984), Univ. Stud. Bologna, 1985, pp. 93–107. (1985) MR0866151
- Eelbode, D., Clifford analysis on the hyperbolic unit ball, Ph.D. thesis, Ghent University, 2005. (2005) MR2715781
- Frenkel, I., Libine, M., 10.1016/j.aim.2008.03.021, Adv. Math. 218 (2008), 1806–1877. (2008) Zbl1167.30030MR2431662DOI10.1016/j.aim.2008.03.021
- Gürlebeck, K., Sprössig, W., Quaternionic and Clifford Calculus for Physicists and Engineers, John Wiley Sons, Inc., 1997. (1997)
- Gürsey, F., Tze, C.-H., On the role of division, Jordan and related algebras in particle physics, World Scientific Publishing Co., 1996. (1996) MR1626607
- Leutwiler, H., 10.1080/17476939208814508, Complex Variables and Elliptic Equations 17 (3,4) (1992), 153–171, http://dx.doi.org/10.1080/17476939208814508. (1992) Zbl0758.30037MR1147046DOI10.1080/17476939208814508
- Libine, M., Hyperbolic Cauchy integral formula for the split complex number, arXiv:0712.0375v1, pp.6, 12 2007. (2007)
- Souček, V., 10.1080/17476938308814023, Complex Variables and Elliptic Equations 1 (4) (1983), 327–346, http://dx.doi.org/10.1080/17476938308814023. (1983) MR0706989DOI10.1080/17476938308814023
- Sudbery, A., 10.1017/S0305004100055638, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. (1979) Zbl0399.30038MR0516081DOI10.1017/S0305004100055638
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.