An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid

Martin Sikora

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 5, page 363-376
  • ISSN: 0044-8753

Abstract

top
The Dirac equation for spinor-valued fields f on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet H + of the hyperboloid. In particular, we derive an integral formula expressing the value of f in a chosen point p as an integral over a compact cycle given by the intersection of the null cone with H + in the Minkowski space 𝕄 .

How to cite

top

Sikora, Martin. "An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid." Archivum Mathematicum 046.5 (2010): 363-376. <http://eudml.org/doc/116499>.

@article{Sikora2010,
abstract = {The Dirac equation for spinor-valued fields $f$ on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet $H^+$ of the hyperboloid. In particular, we derive an integral formula expressing the value of $f$ in a chosen point $p$ as an integral over a compact cycle given by the intersection of the null cone with $H^+$ in the Minkowski space $\{\mathbb \{M\}\}$.},
author = {Sikora, Martin},
journal = {Archivum Mathematicum},
keywords = {Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space; Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space},
language = {eng},
number = {5},
pages = {363-376},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid},
url = {http://eudml.org/doc/116499},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Sikora, Martin
TI - An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 5
SP - 363
EP - 376
AB - The Dirac equation for spinor-valued fields $f$ on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet $H^+$ of the hyperboloid. In particular, we derive an integral formula expressing the value of $f$ in a chosen point $p$ as an integral over a compact cycle given by the intersection of the null cone with $H^+$ in the Minkowski space ${\mathbb {M}}$.
LA - eng
KW - Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space; Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space
UR - http://eudml.org/doc/116499
ER -

References

top
  1. Brackx, F., Delanghe, R., Sommen, F., Clifford analysis, Pitman Advanced Pub. Program, 1982. (1982) Zbl0529.30001MR0697564
  2. Bureš, J., Souček, V., The Penrose transform on isotropic Grassmannians, in 75 Years of Radon transform, Conf. Proc. Lecture Notes Math. Phys., 1994. (1994) MR1313925
  3. Delanghe, R., Lávička, R., Souček, V., On polynomial solutions of generalized Moisil-Theodoresco systems and Hodge-de Rham systems, arXiv:0908.0842, pp.11, 08 2009. (2009) 
  4. Delanghe, R., Sommen, F., Souček, V., Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, vol. 53, Math. Appl., 1992. (1992) MR1169463
  5. Dodson, M., Souček, V., Leray residues applied to the solution of the Laplace and wave equations, Geometry seminars 1984 (Italian) (Bologna, 1984), Univ. Stud. Bologna, 1985, pp. 93–107. (1985) MR0866151
  6. Eelbode, D., Clifford analysis on the hyperbolic unit ball, Ph.D. thesis, Ghent University, 2005. (2005) MR2715781
  7. Frenkel, I., Libine, M., 10.1016/j.aim.2008.03.021, Adv. Math. 218 (2008), 1806–1877. (2008) Zbl1167.30030MR2431662DOI10.1016/j.aim.2008.03.021
  8. Gürlebeck, K., Sprössig, W., Quaternionic and Clifford Calculus for Physicists and Engineers, John Wiley Sons, Inc., 1997. (1997) 
  9. Gürsey, F., Tze, C.-H., On the role of division, Jordan and related algebras in particle physics, World Scientific Publishing Co., 1996. (1996) MR1626607
  10. Leutwiler, H., 10.1080/17476939208814508, Complex Variables and Elliptic Equations 17 (3,4) (1992), 153–171, http://dx.doi.org/10.1080/17476939208814508. (1992) Zbl0758.30037MR1147046DOI10.1080/17476939208814508
  11. Libine, M., Hyperbolic Cauchy integral formula for the split complex number, arXiv:0712.0375v1, pp.6, 12 2007. (2007) 
  12. Souček, V., 10.1080/17476938308814023, Complex Variables and Elliptic Equations 1 (4) (1983), 327–346, http://dx.doi.org/10.1080/17476938308814023. (1983) MR0706989DOI10.1080/17476938308814023
  13. Sudbery, A., 10.1017/S0305004100055638, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. (1979) Zbl0399.30038MR0516081DOI10.1017/S0305004100055638

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.