A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations
We prove a posteriori error estimates of optimal order for linear Schrödinger-type equations in the L∞(L2)- and the L∞(H1)-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis et al. in [Math. Comput. 75 (2006) 511–531], leads to a posteriori upper bounds that are of optimal order in the L∞(L2)-norm, but of suboptimal order in the L∞(H1)-norm. The optimality in the case of L∞(H1)-norm is recovered by using...