Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect
Jaroslav Hron; Maria Neuss-Radu; Petra Pustějovská
Applications of Mathematics (2011)
- Volume: 56, Issue: 1, page 51-68
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHron, Jaroslav, Neuss-Radu, Maria, and Pustějovská, Petra. "Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect." Applications of Mathematics 56.1 (2011): 51-68. <http://eudml.org/doc/116504>.
@article{Hron2011,
abstract = {In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved numerically for the situation of a domain in two dimensions, consisting of two subdomains separated by a rigid fixed membrane. The numerical results for different values of the material parameters and different computational settings are compared.},
author = {Hron, Jaroslav, Neuss-Radu, Maria, Pustějovská, Petra},
journal = {Applications of Mathematics},
keywords = {leaky semipermeable membrane; osmotic pressure; transmission conditions; finite element method; leaky semipermeable membrane; osmotic pressure; transmission condition; finite element method},
language = {eng},
number = {1},
pages = {51-68},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect},
url = {http://eudml.org/doc/116504},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Hron, Jaroslav
AU - Neuss-Radu, Maria
AU - Pustějovská, Petra
TI - Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 51
EP - 68
AB - In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved numerically for the situation of a domain in two dimensions, consisting of two subdomains separated by a rigid fixed membrane. The numerical results for different values of the material parameters and different computational settings are compared.
LA - eng
KW - leaky semipermeable membrane; osmotic pressure; transmission conditions; finite element method; leaky semipermeable membrane; osmotic pressure; transmission condition; finite element method
UR - http://eudml.org/doc/116504
ER -
References
top- Cheng, T., 10.1016/S1383-5866(97)00051-8, Separation and Purification Technology 13 (1998), 1-8. (1998) DOI10.1016/S1383-5866(97)00051-8
- Coleman, P. J., Scott, D., Mason, R. M., Levick, J. R., 10.1111/j.1469-7793.1999.265af.x, The Journal of Physiology 514 (1999), 265-282. (1999) DOI10.1111/j.1469-7793.1999.265af.x
- Hron, J., Leroux, C., Málek, J., Rajagopal, K., 10.1016/j.camwa.2008.03.058, Comput. Math. Appl. 56 (2008), 2128-2143. (2008) MR2466718DOI10.1016/j.camwa.2008.03.058
- Kedem, O., Katchalsky, A., 10.1016/0006-3002(58)90330-5, Biochimica et Biophysica Acta 27 (1958), 229-246. (1958) DOI10.1016/0006-3002(58)90330-5
- Kocherginsky, N., 10.1016/j.ces.2009.10.024, Chemical Engineering Science 65 (2010), 1474-1489. (2010) DOI10.1016/j.ces.2009.10.024
- Neuss-Radu, M., Jäger, W., 10.1137/060665452, SIAM J. Math. Anal. 39 (2007), 687-720. (2007) Zbl1145.35017MR2349863DOI10.1137/060665452
- Patlak, C., Goldstein, D., Hoffman, J., 10.1016/0022-5193(63)90088-2, J. Theoretical Biology 5 (1963), 426-442. (1963) DOI10.1016/0022-5193(63)90088-2
- Rajagopal, K., Wineman, A., 10.1016/0020-7225(83)90081-2, Int. J. Eng. Sci. 21 (1983), 1171-1183. (1983) Zbl0538.76091DOI10.1016/0020-7225(83)90081-2
- Scott, D., Coleman, P., Mason, R., Levick, J., 10.1006/mvre.1999.2231, Microvasc. Research 59 (2000), 345-353. (2000) DOI10.1006/mvre.1999.2231
- Tao, L., Humphrey, J., Rajagopal, K., 10.1016/S0020-7225(01)00019-2, Int. J. Eng. Sci. 39 (2001), 1535-1556. (2001) DOI10.1016/S0020-7225(01)00019-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.