Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions
Antonín Novotný; Milan Pokorný
Applications of Mathematics (2011)
- Volume: 56, Issue: 1, page 137-160
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNovotný, Antonín, and Pokorný, Milan. "Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions." Applications of Mathematics 56.1 (2011): 137-160. <http://eudml.org/doc/116508>.
@article{Novotný2011,
abstract = {We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law $p(\varrho ,\vartheta ) \sim \varrho ^\gamma + \varrho \vartheta $ if $\gamma >1$ and $p(\varrho ,\vartheta ) \sim \varrho \ln ^\alpha (1+\varrho ) + \varrho \vartheta $ if $\gamma =1$, $\alpha >0$, depending on the model for the heat flux.},
author = {Novotný, Antonín, Pokorný, Milan},
journal = {Applications of Mathematics},
keywords = {steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz spaces; compensated compactness; renormalized solution; steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz space; compensated compactness; renormalized solution},
language = {eng},
number = {1},
pages = {137-160},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions},
url = {http://eudml.org/doc/116508},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Novotný, Antonín
AU - Pokorný, Milan
TI - Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 137
EP - 160
AB - We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law $p(\varrho ,\vartheta ) \sim \varrho ^\gamma + \varrho \vartheta $ if $\gamma >1$ and $p(\varrho ,\vartheta ) \sim \varrho \ln ^\alpha (1+\varrho ) + \varrho \vartheta $ if $\gamma =1$, $\alpha >0$, depending on the model for the heat flux.
LA - eng
KW - steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz spaces; compensated compactness; renormalized solution; steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz space; compensated compactness; renormalized solution
UR - http://eudml.org/doc/116508
ER -
References
top- Erban, R., 10.1002/mma.362, Math. Methods Appl. Sci. 26 (2003), 489-517. (2003) Zbl1061.76073MR1965718DOI10.1002/mma.362
- Feireisl, E., Novotný, A., Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics, Birkhäuser Basel (2009). (2009) MR2499296
- Frehse, J., Steinhauer, M., Weigant, W., The Dirichlet Problem for Steady Viscous Compressible Flow in 3-D, Preprint University of Bonn, SFB 611, No. 347 (2007), http://www.iam.uni-bonn.de/sfb611/.
- Frehse, J., Steinhauer, M., Weigant, W., 10.1007/s00205-010-0338-2, Arch. Ration. Mech. Anal. 198 (2010), 1-12. (2010) Zbl1229.35175MR2679367DOI10.1007/s00205-010-0338-2
- Kufner, A., John, O., Fučík, S., Function spaces, Academia Praha (1977). (1977) MR0482102
- Lions, P.-L., Mathematical Topics in Fluid Dynamics, Vol. 2: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, Vol. 10, Clarendon Press Oxford (1998). (1998) MR1637634
- Maligranda, L., Orlicz Spaces and Interpolation, Univ. Estadual de Campinas Campinas (1989). (1989) Zbl0874.46022MR2264389
- Mucha, P. B., Pokorný, M., 10.1007/s00220-009-0772-x, Commun. Math. Phys. 288 (2009), 349-377. (2009) Zbl1172.35467MR2491627DOI10.1007/s00220-009-0772-x
- Mucha, P. B., Pokorný, M., 10.1142/S0218202510004441, Math. Models Methods Appl. Sci. 20 (2010), 785-813. (2010) Zbl1191.35207MR2652619DOI10.1142/S0218202510004441
- Novotný, A., Pokorný, M., Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations, J. Differ. Equations Accepted. See also Preprint Series of Nečas Center for Mathematical Modeling, http://www.karlin.mff.cuni.cz/ncmm/research/Preprints/servirPrintsYY.php?y=2010. Preprint No. 2010-021.
- Novotný, A., Pokorný, M., Weak and variational solutions to steady equations for compressible heat conducting fluids, Submitted. See also Preprint Series of Nečas Center for Mathematical Modeling, http://www.karlin.mff.cuni.cz/ncmm/research/Preprints/servirPrintsYY.php?y=2010. Preprint No. 2010-023.
- Novotný, A., Straškraba, I., Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press Oxford (2004). (2004) Zbl1088.35051MR2084891
- Pecharová, P., Pokorný, M., Steady compressible Navier-Stokes-Fourier system in two space dimensions, Commentat. Math. Univ. Carol (to appear). MR2858268
- Plotnikov, P. I., Sokołowski, J., 10.1007/s00021-004-0134-6, J. Math. Fluid Mech. 7 (2005), 529-573. (2005) Zbl1090.35140MR2189674DOI10.1007/s00021-004-0134-6
- Plotnikov, P. I., Sokołowski, J., 10.1007/s00220-005-1358-x, Commun. Math. Phys. 258 (2005), 567-608. (2005) MR2172011DOI10.1007/s00220-005-1358-x
- Plotnikov, P. I., Sokołowski, J., 10.1070/RM2007v062n03ABEH004414, Russ. Math. Surv. 62 (2007), 561-593. (2007) Zbl1139.76049MR2355421DOI10.1070/RM2007v062n03ABEH004414
- Vodák, R., The problem and singular integrals on Orlicz spaces, Acta Univ. Palacki. Olomuc, Fac. Rerum Nat. Math. 41 (2002), 161-173. (2002) MR1968228
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.