Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions

Antonín Novotný; Milan Pokorný

Applications of Mathematics (2011)

  • Volume: 56, Issue: 1, page 137-160
  • ISSN: 0862-7940

Abstract

top
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law p ( ϱ , ϑ ) ϱ γ + ϱ ϑ if γ > 1 and p ( ϱ , ϑ ) ϱ ln α ( 1 + ϱ ) + ϱ ϑ if γ = 1 , α > 0 , depending on the model for the heat flux.

How to cite

top

Novotný, Antonín, and Pokorný, Milan. "Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions." Applications of Mathematics 56.1 (2011): 137-160. <http://eudml.org/doc/116508>.

@article{Novotný2011,
abstract = {We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law $p(\varrho ,\vartheta ) \sim \varrho ^\gamma + \varrho \vartheta $ if $\gamma >1$ and $p(\varrho ,\vartheta ) \sim \varrho \ln ^\alpha (1+\varrho ) + \varrho \vartheta $ if $\gamma =1$, $\alpha >0$, depending on the model for the heat flux.},
author = {Novotný, Antonín, Pokorný, Milan},
journal = {Applications of Mathematics},
keywords = {steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz spaces; compensated compactness; renormalized solution; steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz space; compensated compactness; renormalized solution},
language = {eng},
number = {1},
pages = {137-160},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions},
url = {http://eudml.org/doc/116508},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Novotný, Antonín
AU - Pokorný, Milan
TI - Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 137
EP - 160
AB - We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law $p(\varrho ,\vartheta ) \sim \varrho ^\gamma + \varrho \vartheta $ if $\gamma >1$ and $p(\varrho ,\vartheta ) \sim \varrho \ln ^\alpha (1+\varrho ) + \varrho \vartheta $ if $\gamma =1$, $\alpha >0$, depending on the model for the heat flux.
LA - eng
KW - steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz spaces; compensated compactness; renormalized solution; steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz space; compensated compactness; renormalized solution
UR - http://eudml.org/doc/116508
ER -

References

top
  1. Erban, R., 10.1002/mma.362, Math. Methods Appl. Sci. 26 (2003), 489-517. (2003) Zbl1061.76073MR1965718DOI10.1002/mma.362
  2. Feireisl, E., Novotný, A., Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics, Birkhäuser Basel (2009). (2009) MR2499296
  3. Frehse, J., Steinhauer, M., Weigant, W., The Dirichlet Problem for Steady Viscous Compressible Flow in 3-D, Preprint University of Bonn, SFB 611, No. 347 (2007), http://www.iam.uni-bonn.de/sfb611/. 
  4. Frehse, J., Steinhauer, M., Weigant, W., 10.1007/s00205-010-0338-2, Arch. Ration. Mech. Anal. 198 (2010), 1-12. (2010) Zbl1229.35175MR2679367DOI10.1007/s00205-010-0338-2
  5. Kufner, A., John, O., Fučík, S., Function spaces, Academia Praha (1977). (1977) MR0482102
  6. Lions, P.-L., Mathematical Topics in Fluid Dynamics, Vol. 2: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, Vol. 10, Clarendon Press Oxford (1998). (1998) MR1637634
  7. Maligranda, L., Orlicz Spaces and Interpolation, Univ. Estadual de Campinas Campinas (1989). (1989) Zbl0874.46022MR2264389
  8. Mucha, P. B., Pokorný, M., 10.1007/s00220-009-0772-x, Commun. Math. Phys. 288 (2009), 349-377. (2009) Zbl1172.35467MR2491627DOI10.1007/s00220-009-0772-x
  9. Mucha, P. B., Pokorný, M., 10.1142/S0218202510004441, Math. Models Methods Appl. Sci. 20 (2010), 785-813. (2010) Zbl1191.35207MR2652619DOI10.1142/S0218202510004441
  10. Novotný, A., Pokorný, M., Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations, J. Differ. Equations Accepted. See also Preprint Series of Nečas Center for Mathematical Modeling, http://www.karlin.mff.cuni.cz/ncmm/research/Preprints/servirPrintsYY.php?y=2010. Preprint No. 2010-021. 
  11. Novotný, A., Pokorný, M., Weak and variational solutions to steady equations for compressible heat conducting fluids, Submitted. See also Preprint Series of Nečas Center for Mathematical Modeling, http://www.karlin.mff.cuni.cz/ncmm/research/Preprints/servirPrintsYY.php?y=2010. Preprint No. 2010-023. 
  12. Novotný, A., Straškraba, I., Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press Oxford (2004). (2004) Zbl1088.35051MR2084891
  13. Pecharová, P., Pokorný, M., Steady compressible Navier-Stokes-Fourier system in two space dimensions, Commentat. Math. Univ. Carol (to appear). MR2858268
  14. Plotnikov, P. I., Sokołowski, J., 10.1007/s00021-004-0134-6, J. Math. Fluid Mech. 7 (2005), 529-573. (2005) Zbl1090.35140MR2189674DOI10.1007/s00021-004-0134-6
  15. Plotnikov, P. I., Sokołowski, J., 10.1007/s00220-005-1358-x, Commun. Math. Phys. 258 (2005), 567-608. (2005) MR2172011DOI10.1007/s00220-005-1358-x
  16. Plotnikov, P. I., Sokołowski, J., 10.1070/RM2007v062n03ABEH004414, Russ. Math. Surv. 62 (2007), 561-593. (2007) Zbl1139.76049MR2355421DOI10.1070/RM2007v062n03ABEH004414
  17. Vodák, R., The problem div v = f and singular integrals on Orlicz spaces, Acta Univ. Palacki. Olomuc, Fac. Rerum Nat. Math. 41 (2002), 161-173. (2002) MR1968228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.