Existence results for first order impulsive functional differential equations with state-dependent delay

Mouffak Benchohra; Benaouda Hedia

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2010)

  • Volume: 49, Issue: 2, page 5-19
  • ISSN: 0231-9721

Abstract

top
In this paper we study the existence of solutions for impulsive differential equations with state dependent delay. Our results are based on the Leray–Schauder nonlinear alternative and Burton–Kirk fixed point theorem for the sum of two operators.

How to cite

top

Benchohra, Mouffak, and Hedia, Benaouda. "Existence results for first order impulsive functional differential equations with state-dependent delay." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 49.2 (2010): 5-19. <http://eudml.org/doc/116510>.

@article{Benchohra2010,
abstract = {In this paper we study the existence of solutions for impulsive differential equations with state dependent delay. Our results are based on the Leray–Schauder nonlinear alternative and Burton–Kirk fixed point theorem for the sum of two operators.},
author = {Benchohra, Mouffak, Hedia, Benaouda},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Differential equation; state-dependent delay; fixed point; impulses; infinite delay; differential equation; state-dependent delay; fixed point; impulses; infinite delay},
language = {eng},
number = {2},
pages = {5-19},
publisher = {Palacký University Olomouc},
title = {Existence results for first order impulsive functional differential equations with state-dependent delay},
url = {http://eudml.org/doc/116510},
volume = {49},
year = {2010},
}

TY - JOUR
AU - Benchohra, Mouffak
AU - Hedia, Benaouda
TI - Existence results for first order impulsive functional differential equations with state-dependent delay
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2010
PB - Palacký University Olomouc
VL - 49
IS - 2
SP - 5
EP - 19
AB - In this paper we study the existence of solutions for impulsive differential equations with state dependent delay. Our results are based on the Leray–Schauder nonlinear alternative and Burton–Kirk fixed point theorem for the sum of two operators.
LA - eng
KW - Differential equation; state-dependent delay; fixed point; impulses; infinite delay; differential equation; state-dependent delay; fixed point; impulses; infinite delay
UR - http://eudml.org/doc/116510
ER -

References

top
  1. Abada, N., Agarwal, R. P., Benchohra, M., Hammouche, H., 10.1142/S1793557108000382, Asian-Eur. J. Math. 1, 4 (2008), 449–468. (2008) Zbl1179.34070MR2474181DOI10.1142/S1793557108000382
  2. Adimy, M., Bouzahir, H., Ezzinbi, K., 10.1016/S0362-546X(00)00184-X, Nonlinear Anal. 48 (2002), 323–348. (2002) MR1869515DOI10.1016/S0362-546X(00)00184-X
  3. Adimy, M, Ezzinbi, K., 10.1006/jdeq.1998.3446, J. Differential Equations 147 (1998), 285–332. (1998) Zbl0915.35109MR1633941DOI10.1006/jdeq.1998.3446
  4. Ait Dads, E., Ezzinbi, K., Boundedness and almost periodicity for some state-dependent delay differential equations, Electron. J. Differential Equations 2002, 67 (2002), 1–13. (2002) MR1921140
  5. Aiello, W. G., Freedman, H. I., Wu, J., 10.1137/0152048, SIAM J. Appl. Math. 52, 3 (1992), 855–869. (1992) Zbl0760.92018MR1163810DOI10.1137/0152048
  6. Anguraj, A., Arjunan, M. M., Hernàndez, E. M., 10.1080/00036810701354995, Appl. Anal. 86, 7 (2007), 861–872. (2007) MR2355543DOI10.1080/00036810701354995
  7. Bainov, D. D., Simeonov, P. S., Systems with Impulsive effect, Horwood, Chichister, 1989. (1989) MR1010418
  8. Benchohra, M., Henderson, J., Ntouyas, S. K., Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol 2, New York, 2006. (2006) Zbl1130.34003MR2322133
  9. Burton, T. A., Kirk, C., 10.1002/mana.19981890103, Math. Nachr. 189 (1998), 23–31. (1998) MR1492921DOI10.1002/mana.19981890103
  10. Cao, Y., Fan, J., Gard, T. C., 10.1016/0362-546X(92)90113-S, Nonlinear Anal. 19, 2 (1992), 95–105. (1992) Zbl0777.92014MR1174461DOI10.1016/0362-546X(92)90113-S
  11. Corduneanu, C., Lakshmikantham, V., 10.1016/0362-546X(80)90001-2, Nonlinear Anal. 4 (1980), 831–877. (1980) Zbl0449.34048MR0586852DOI10.1016/0362-546X(80)90001-2
  12. Domoshnitsky, A., Drakhlin, M., Litsyn, E., 10.1016/S0362-546X(01)00132-8, Nonlinear Anal. 49, 5 (2002), 689–701. (2002) Zbl1012.34066MR1894304DOI10.1016/S0362-546X(01)00132-8
  13. Granas, A., Dugundji, J., Fixed Point Theory, Springer, New York, 2003. (2003) Zbl1025.47002MR1987179
  14. Hale, J., Kato, J., Phase space for retarded equations with infinite delay, Funkc. Ekvac. 21 (1978), 11–41. (1978) Zbl0383.34055MR0492721
  15. Hale, J. K., Verduyn Lunel, S. M., Introduction to Functional Differential Equations, Applied Mathematical Sciences 99, Springer, New York, 1993. (1993) Zbl0787.34002MR1243878
  16. Hartung, F., 10.1016/j.cam.2004.04.006, J. Comput. Appl. Math. 174 (2005), 201–211. (2005) Zbl1077.34074MR2106436DOI10.1016/j.cam.2004.04.006
  17. Hartung, F., Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study, Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. 47 (2001), 4557–4566. (2001) Zbl1042.34582MR1975850
  18. Hartung, F., Turi, J., 10.1016/S0362-546X(96)00100-9, Nonlinear Anal. 29 (1997), 1303–1318. (1997) Zbl0894.34071MR1472420DOI10.1016/S0362-546X(96)00100-9
  19. Hernández, E., Prokopczyk, A., Ladeira, L., A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. Real World Appl. 7 (2006), 510–519. (2006) Zbl1109.34060MR2235215
  20. Hernández, E., Sakthivel, R., Tanaka Aki, S., Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differential Equations 2008, 28 (2008), 1–11. (2008) MR2390434
  21. Hino, Y., Murakami, S., Naito, T., Functional Differential Equations with Unbounded Delay, Springer-Verlag, Berlin, 1991. (1991) MR1122588
  22. Kolmanovskii, V., Myshkis, A., Introduction to the Theory and Applications of Functional-Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. (1999) Zbl0917.34001MR1680144
  23. Lakshmikantham, V., Bainov D. D., Simeonov, P. S., Theory of Impulsive Differntial Equations., World Scientific, Singapore, 1989. (1989) MR1082551
  24. Lakshmikantham, V., Wen, L., Zhang, B., Theory of Differential Equations with Unbounded Delay, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994. (1994) Zbl0823.34069MR1319339
  25. Liang, J., Xiao, Ti-jun, 10.1016/S0898-1221(00)00188-7, Comput. Math. Appl. 40 (2000), 693–707. (2000) MR1776686DOI10.1016/S0898-1221(00)00188-7
  26. Rezounenko, A. V., Wu, J., 10.1016/j.cam.2005.01.047, J. Comput. Appl. Math. 190 (2006), 99–113. (2006) Zbl1082.92039MR2209496DOI10.1016/j.cam.2005.01.047
  27. Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific, Singapore, 1995. (1995) Zbl0837.34003MR1355787
  28. Willé, D. R., Baker, C. T. H., 10.1016/0377-0427(94)90043-4, J. Comput. Appl. Math. 53 (1994), 163–170. (1994) MR1306123DOI10.1016/0377-0427(94)90043-4
  29. Wu, J., Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. (1996) Zbl0870.35116MR1415838

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.