A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side

Martina Pavlačková

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2010)

  • Volume: 49, Issue: 2, page 95-106
  • ISSN: 0231-9721

Abstract

top
In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.

How to cite

top

Pavlačková, Martina. "A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 49.2 (2010): 95-106. <http://eudml.org/doc/116517>.

@article{Pavlačková2010,
abstract = {In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.},
author = {Pavlačková, Martina},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Dirichlet problem; upper-Carathéodory differential inclusions; bounding functions; Dirichlet problem; upper-Caratheodory differential inclusions; bounding functions},
language = {eng},
number = {2},
pages = {95-106},
publisher = {Palacký University Olomouc},
title = {A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side},
url = {http://eudml.org/doc/116517},
volume = {49},
year = {2010},
}

TY - JOUR
AU - Pavlačková, Martina
TI - A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2010
PB - Palacký University Olomouc
VL - 49
IS - 2
SP - 95
EP - 106
AB - In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.
LA - eng
KW - Dirichlet problem; upper-Carathéodory differential inclusions; bounding functions; Dirichlet problem; upper-Caratheodory differential inclusions; bounding functions
UR - http://eudml.org/doc/116517
ER -

References

top
  1. Andres, J., Górniewicz, L., Topological Fixed Point Principles for Boundary Value Problems, Topological Fixed Point Theory and Its Applications, vol. 1 Kluwer, Dordrecht, 2003. (2003) Zbl1029.55002MR1998968
  2. Andres, J., Pavlačková, M., 10.1016/j.na.2008.12.013, Nonlin. Anal. 71, 5–6 (2009), 1462–1473. (2009) Zbl1182.34038MR2524361DOI10.1016/j.na.2008.12.013
  3. Appell, J., De Pascale, E., Thái, N. H., Zabreiko, P. P., Multi-Valued Superpositions, Diss. Math., Vol. 345, PWN, Warsaw, 1995. (1995) MR1354934
  4. De Blasi, F. S., Pianigiani, G., Solution sets of boundary value problems for nonconvex differential inclusions, Topol. Methods Nonlinear Anal. 1 (1993), 303–314. (1993) Zbl0785.34018MR1233098
  5. Deimling, K., Multivalued Differential Equations, de Gruyter, Berlin, 1992. (1992) Zbl0820.34009MR1189795
  6. Erbe, L., Krawcewicz, W., Nonlinear boundary value problems for differential inclusions y ' ' F ( t , y , y ' ) , Ann. Pol. Math. 54 (1991), 195–226. (1991) Zbl0731.34078MR1114171
  7. Gaines, R., Mawhin, J., Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin, 1977. (1977) Zbl0339.47031MR0637067
  8. Halidias, N., Papageorgiou, N. S., 10.1006/jdeq.1998.3439, J. Diff. Equations 147 (1998), 123–154. (1998) MR1632661DOI10.1006/jdeq.1998.3439
  9. Halidias, N., Papageorgiou, N. S., 10.1016/S0377-0427(99)00243-5, J. Comput. Appl. Math. 113 (2000), 51–64. (2000) Zbl0941.34008MR1735812DOI10.1016/S0377-0427(99)00243-5
  10. Kožušníková, M., A bounding functions approach to multivalued Dirichlet problem, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 55 (2007), 1–19. (2007) Zbl1202.34036MR2458792
  11. Kyritsi, S., Matzakos, N., Papageorgiou, N. S., 10.1007/s10587-005-0046-5, Czechoslovak Math. J. 55 (2005), 545–579. (2005) Zbl1081.34020MR2153083DOI10.1007/s10587-005-0046-5
  12. Miklaszewski, D., The two-point problem for nonlinear ordinary differential equations and differential inclusions, Univ. Iagell Acta Math. 36 (1998), 127–132. (1998) Zbl1002.34011MR1661330
  13. Palmucci, M., Papalini, F., 10.1155/S1048953301000120, J. of Applied Math. and Stoch. Anal. 14 (2001), 161–182. (2001) Zbl1014.34009MR1838344DOI10.1155/S1048953301000120
  14. Zuev, A. V., On the Dirichlet problem for a second-order ordinary differential equation with discontinuous right-hand side, Diff. Urav. 42 (2006), 320–326. (2006) Zbl1133.34309MR2290542

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.