A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2010)
- Volume: 49, Issue: 2, page 95-106
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topPavlačková, Martina. "A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 49.2 (2010): 95-106. <http://eudml.org/doc/116517>.
@article{Pavlačková2010,
abstract = {In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.},
author = {Pavlačková, Martina},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Dirichlet problem; upper-Carathéodory differential inclusions; bounding functions; Dirichlet problem; upper-Caratheodory differential inclusions; bounding functions},
language = {eng},
number = {2},
pages = {95-106},
publisher = {Palacký University Olomouc},
title = {A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side},
url = {http://eudml.org/doc/116517},
volume = {49},
year = {2010},
}
TY - JOUR
AU - Pavlačková, Martina
TI - A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2010
PB - Palacký University Olomouc
VL - 49
IS - 2
SP - 95
EP - 106
AB - In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.
LA - eng
KW - Dirichlet problem; upper-Carathéodory differential inclusions; bounding functions; Dirichlet problem; upper-Caratheodory differential inclusions; bounding functions
UR - http://eudml.org/doc/116517
ER -
References
top- Andres, J., Górniewicz, L., Topological Fixed Point Principles for Boundary Value Problems, Topological Fixed Point Theory and Its Applications, vol. 1 Kluwer, Dordrecht, 2003. (2003) Zbl1029.55002MR1998968
- Andres, J., Pavlačková, M., 10.1016/j.na.2008.12.013, Nonlin. Anal. 71, 5–6 (2009), 1462–1473. (2009) Zbl1182.34038MR2524361DOI10.1016/j.na.2008.12.013
- Appell, J., De Pascale, E., Thái, N. H., Zabreiko, P. P., Multi-Valued Superpositions, Diss. Math., Vol. 345, PWN, Warsaw, 1995. (1995) MR1354934
- De Blasi, F. S., Pianigiani, G., Solution sets of boundary value problems for nonconvex differential inclusions, Topol. Methods Nonlinear Anal. 1 (1993), 303–314. (1993) Zbl0785.34018MR1233098
- Deimling, K., Multivalued Differential Equations, de Gruyter, Berlin, 1992. (1992) Zbl0820.34009MR1189795
- Erbe, L., Krawcewicz, W., Nonlinear boundary value problems for differential inclusions , Ann. Pol. Math. 54 (1991), 195–226. (1991) Zbl0731.34078MR1114171
- Gaines, R., Mawhin, J., Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin, 1977. (1977) Zbl0339.47031MR0637067
- Halidias, N., Papageorgiou, N. S., 10.1006/jdeq.1998.3439, J. Diff. Equations 147 (1998), 123–154. (1998) MR1632661DOI10.1006/jdeq.1998.3439
- Halidias, N., Papageorgiou, N. S., 10.1016/S0377-0427(99)00243-5, J. Comput. Appl. Math. 113 (2000), 51–64. (2000) Zbl0941.34008MR1735812DOI10.1016/S0377-0427(99)00243-5
- Kožušníková, M., A bounding functions approach to multivalued Dirichlet problem, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 55 (2007), 1–19. (2007) Zbl1202.34036MR2458792
- Kyritsi, S., Matzakos, N., Papageorgiou, N. S., 10.1007/s10587-005-0046-5, Czechoslovak Math. J. 55 (2005), 545–579. (2005) Zbl1081.34020MR2153083DOI10.1007/s10587-005-0046-5
- Miklaszewski, D., The two-point problem for nonlinear ordinary differential equations and differential inclusions, Univ. Iagell Acta Math. 36 (1998), 127–132. (1998) Zbl1002.34011MR1661330
- Palmucci, M., Papalini, F., 10.1155/S1048953301000120, J. of Applied Math. and Stoch. Anal. 14 (2001), 161–182. (2001) Zbl1014.34009MR1838344DOI10.1155/S1048953301000120
- Zuev, A. V., On the Dirichlet problem for a second-order ordinary differential equation with discontinuous right-hand side, Diff. Urav. 42 (2006), 320–326. (2006) Zbl1133.34309MR2290542
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.