Nonlinear boundary value problems for second order differential inclusions

Sophia Th. Kyritsi; Nikolaos M. Matzakos; Nikolaos S. Papageorgiou

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 3, page 545-579
  • ISSN: 0011-4642

Abstract

top
In this paper we study two boundary value problems for second order strongly nonlinear differential inclusions involving a maximal monotone term. The first is a vector problem with Dirichlet boundary conditions and a nonlinear differential operator of the form x a ( x , x ' ) ' . In this problem the maximal monotone term is required to be defined everywhere in the state space N . The second problem is a scalar problem with periodic boundary conditions and a differential operator of the form x ( a ( x ) x ' ) ' . In this case the maximal monotone term need not be defined everywhere, incorporating into our framework differential variational inequalities. Using techniques from multivalued analysis and from nonlinear analysis, we prove the existence of solutions for both problems under convexity and nonconvexity conditions on the multivalued right-hand side.

How to cite

top

Kyritsi, Sophia Th., Matzakos, Nikolaos M., and Papageorgiou, Nikolaos S.. "Nonlinear boundary value problems for second order differential inclusions." Czechoslovak Mathematical Journal 55.3 (2005): 545-579. <http://eudml.org/doc/30969>.

@article{Kyritsi2005,
abstract = {In this paper we study two boundary value problems for second order strongly nonlinear differential inclusions involving a maximal monotone term. The first is a vector problem with Dirichlet boundary conditions and a nonlinear differential operator of the form $x\mapsto a(x,x^\{\prime \})^\{\prime \}$. In this problem the maximal monotone term is required to be defined everywhere in the state space $\mathbb \{R\}^N$. The second problem is a scalar problem with periodic boundary conditions and a differential operator of the form $x\mapsto (a(x)x^\{\prime \})^\{\prime \}$. In this case the maximal monotone term need not be defined everywhere, incorporating into our framework differential variational inequalities. Using techniques from multivalued analysis and from nonlinear analysis, we prove the existence of solutions for both problems under convexity and nonconvexity conditions on the multivalued right-hand side.},
author = {Kyritsi, Sophia Th., Matzakos, Nikolaos M., Papageorgiou, Nikolaos S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {measurable multifunction; usc and lsc multifunction; maximal monotone operator; pseudomonotone operator; generalized pseudomonotone operator; coercive operator; surjective operator; eigenvalue; eigenfunction; Rayleigh quotient; $p$-Laplacian; Yosida approximation; periodic problem; measurable multifunction; usc and lsc multifunction; maximal monotone operator; pseudomonotone operator; generalized pseudomonotone operator},
language = {eng},
number = {3},
pages = {545-579},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear boundary value problems for second order differential inclusions},
url = {http://eudml.org/doc/30969},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Kyritsi, Sophia Th.
AU - Matzakos, Nikolaos M.
AU - Papageorgiou, Nikolaos S.
TI - Nonlinear boundary value problems for second order differential inclusions
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 545
EP - 579
AB - In this paper we study two boundary value problems for second order strongly nonlinear differential inclusions involving a maximal monotone term. The first is a vector problem with Dirichlet boundary conditions and a nonlinear differential operator of the form $x\mapsto a(x,x^{\prime })^{\prime }$. In this problem the maximal monotone term is required to be defined everywhere in the state space $\mathbb {R}^N$. The second problem is a scalar problem with periodic boundary conditions and a differential operator of the form $x\mapsto (a(x)x^{\prime })^{\prime }$. In this case the maximal monotone term need not be defined everywhere, incorporating into our framework differential variational inequalities. Using techniques from multivalued analysis and from nonlinear analysis, we prove the existence of solutions for both problems under convexity and nonconvexity conditions on the multivalued right-hand side.
LA - eng
KW - measurable multifunction; usc and lsc multifunction; maximal monotone operator; pseudomonotone operator; generalized pseudomonotone operator; coercive operator; surjective operator; eigenvalue; eigenfunction; Rayleigh quotient; $p$-Laplacian; Yosida approximation; periodic problem; measurable multifunction; usc and lsc multifunction; maximal monotone operator; pseudomonotone operator; generalized pseudomonotone operator
UR - http://eudml.org/doc/30969
ER -

References

top
  1. 10.4171/ZAA/1001, Zeitsh. Anal. Anwend. 20 (2001), 3–15. (2001) Zbl0985.34053MR1826317DOI10.4171/ZAA/1001
  2. 10.1016/0362-546X(86)90091-X, Nonlin. Anal. 10 (1986), 1083–1103. (1986) MR0857742DOI10.1016/0362-546X(86)90091-X
  3. Operateurs Maximaux Monotones, North-Holland, Amsterdam, 1973. (1973) Zbl0252.47055
  4. 10.1016/0022-1236(72)90070-5, J.  Funct. Anal. 11 (1972), 251–254. (1972) MR0365242DOI10.1016/0022-1236(72)90070-5
  5. Optimization and Nonsmooth Analysis, Wiley, New York, 1983. (1983) Zbl0582.49001MR0709590
  6. Measure Theory, Birkhauser-Verlag, Boston, 1980. (1980) Zbl0436.28001MR0578344
  7. 10.1006/jmaa.1996.0066, J.  Math. Anal. Appl. 198 (1996), 35–48. (1996) MR1373525DOI10.1006/jmaa.1996.0066
  8. 10.1016/0022-0396(89)90093-4, J.  Differential Equations 80 (1989), 1–13. (1989) MR1003248DOI10.1016/0022-0396(89)90093-4
  9. Solvability of boundary value problems with homogeneous ordinary differential operator, Rend. Ist. Mat. Univ. Trieste 8 (1986), 105–124. (1986) MR0928322
  10. 10.4064/ap-54-3-195-226, Ann. Pol. Math. 54 (1991), 195–226. (1991) MR1114171DOI10.4064/ap-54-3-195-226
  11. Boundary value problems differential inclusions, Lect. Notes Pure Appl. Math., No.  127, Marcel-Dekker, New York, 1990, pp. 115–135. (1990) MR1096748
  12. 10.1216/rmjm/1181072746, Rocky Mountain J.  Math. 22 (1992), 519–539. (1992) MR1180717DOI10.1216/rmjm/1181072746
  13. 10.1007/BF01765848, Ann. Mat. Pura Appl. 166 (1993), 169–195. (1993) MR1271418DOI10.1007/BF01765848
  14. Periodic solutions of second order differential equations with a p -Laplacian and asymmetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. (1992) MR1310080
  15. Application de la theorie de la transversalite topologique a des problemes non lineaires pour des equations differentielles ordinaires, Dissertationes Math. 269 (1990). (1990) Zbl0728.34017MR1075674
  16. Theoremes d’existence des solutions d’inclusions differentielle, In: Topological Methods in Diferential Equations and Inclusions. NATO ASI Series, Section  C, Vol. 472, Kluwer, Dordrecht, 1995, pp. 51–87. (1995) MR1368670
  17. Problemes aux limites pour des inclusions differentielles de type semi-continues inferieurement, Rivista Mat. Univ. Parma 17 (1991), 87–97. (1991) MR1174938
  18. Spectral Analysis of Nonlinear Operators. Lecture Notes in Math., Vol.  346, Springer-Verlag, Berlin, 1973. (1973) MR0467421
  19. Boundary value problems of a class of quasilinear differential equations, Diff. Intergral Eqns 6 (1993), 705–719. (1993) 
  20. 10.1006/jdeq.1998.3439, J.  Diff. Eqns 147 (1998), 123–154. (1998) MR1632661DOI10.1006/jdeq.1998.3439
  21. 10.1016/S0377-0427(99)00243-5, J.  Comput. Appl. Math. 113 (2000), 51–64. (2000) MR1735812DOI10.1016/S0377-0427(99)00243-5
  22. Ordinary Differential Equations, 2nd Edition, Birkhauser-Verlag, Boston-Basel-Stuttgart, 1982. (1982) MR0658490
  23. Handbook of Multivalued Analysis. Volume  I: Theory, Kluwer, Dordrecht, 1997. (1997) MR1485775
  24. Handbook of Multivalued Analysis. Volume  II: Applications, Kluwer, Dordrecht, 2000. (2000) MR1741926
  25. 10.1006/jdeq.1996.0173, J.  Differential Equations 132 (1996), 107–125. (1996) MR1418502DOI10.1006/jdeq.1996.0173
  26. Theory of Correspondences, Wiley, New York, 1984. (1984) MR0752692
  27. 10.1006/jdeq.2001.4110, J.  Differential Equations 183 (2002), 279–302. (2002) MR1919781DOI10.1006/jdeq.2001.4110
  28. 10.1006/jdeq.1998.3425, J.  Differential Equations 145 (1998), 367–393. (1998) MR1621038DOI10.1006/jdeq.1998.3425
  29. Boundary value problems for nonlinear perturbations of vector p -Laplacian-like operators, J.  Korean Math. Soc. 37 (2000), 665–685. (2000) MR1783579
  30. 10.1007/BF00251378, Arch. Rational Mech. Anal. 45 (1972), 294–320. (1972) MR0338765DOI10.1007/BF00251378
  31. Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989. (1989) Zbl0676.58017MR0982267
  32. Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York, 1994. (1994) MR1304257
  33. 10.1155/S0161171287000516, Intern. J.  Math. Sc. 10 (1987), 433–442. (1987) MR0896595DOI10.1155/S0161171287000516
  34. Some applications of the topological deggre theory to multivalued boundary value problems, Dissertationes Math. 229 (1984). (1984) MR0741752
  35. 10.1137/0315056, SIAM J.  Control Optim. 15 (1977), . (1977) Zbl0407.28006MR0486391DOI10.1137/0315056
  36. Nonlinear Functional Analysis and its Applications  II, Springer-Verlag, New York, 1990. (1990) Zbl0684.47029MR0816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.