Almost sufficient and necessary conditions for permanence and extinction of nonautonomous discrete logistic systems with time-varying delays and feedback control

Jiabo Xu; Zhidong Teng; Shujing Gao

Applications of Mathematics (2011)

  • Volume: 56, Issue: 2, page 207-225
  • ISSN: 0862-7940

Abstract

top
A class of nonautonomous discrete logistic single-species systems with time-varying pure-delays and feedback control is studied. By introducing a new research method, almost sufficient and necessary conditions for the permanence and extinction of species are obtained. Particularly, when the system degenerates into a periodic system, sufficient and necessary conditions on the permanence and extinction of species are obtained. Moreover, a very important fact is found in our results, that is, the feedback control and delays are harmless for the permanence and extinction of species for discrete single-species systems. This shows that in a discrete single-species system introducing the feedback control to factitiously control the permanence and extinction of species is useless.

How to cite

top

Xu, Jiabo, Teng, Zhidong, and Gao, Shujing. "Almost sufficient and necessary conditions for permanence and extinction of nonautonomous discrete logistic systems with time-varying delays and feedback control." Applications of Mathematics 56.2 (2011): 207-225. <http://eudml.org/doc/116521>.

@article{Xu2011,
abstract = {A class of nonautonomous discrete logistic single-species systems with time-varying pure-delays and feedback control is studied. By introducing a new research method, almost sufficient and necessary conditions for the permanence and extinction of species are obtained. Particularly, when the system degenerates into a periodic system, sufficient and necessary conditions on the permanence and extinction of species are obtained. Moreover, a very important fact is found in our results, that is, the feedback control and delays are harmless for the permanence and extinction of species for discrete single-species systems. This shows that in a discrete single-species system introducing the feedback control to factitiously control the permanence and extinction of species is useless.},
author = {Xu, Jiabo, Teng, Zhidong, Gao, Shujing},
journal = {Applications of Mathematics},
keywords = {discrete system; permanence; extinction; feedback control; time-varying delay},
language = {eng},
number = {2},
pages = {207-225},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Almost sufficient and necessary conditions for permanence and extinction of nonautonomous discrete logistic systems with time-varying delays and feedback control},
url = {http://eudml.org/doc/116521},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Xu, Jiabo
AU - Teng, Zhidong
AU - Gao, Shujing
TI - Almost sufficient and necessary conditions for permanence and extinction of nonautonomous discrete logistic systems with time-varying delays and feedback control
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 207
EP - 225
AB - A class of nonautonomous discrete logistic single-species systems with time-varying pure-delays and feedback control is studied. By introducing a new research method, almost sufficient and necessary conditions for the permanence and extinction of species are obtained. Particularly, when the system degenerates into a periodic system, sufficient and necessary conditions on the permanence and extinction of species are obtained. Moreover, a very important fact is found in our results, that is, the feedback control and delays are harmless for the permanence and extinction of species for discrete single-species systems. This shows that in a discrete single-species system introducing the feedback control to factitiously control the permanence and extinction of species is useless.
LA - eng
KW - discrete system; permanence; extinction; feedback control; time-varying delay
UR - http://eudml.org/doc/116521
ER -

References

top
  1. Agarwal, R. P., Difference Equations and Inequalities: Theory, Methods, and Applications, Marcel Dekker New York (1992). (1992) Zbl0925.39001MR1155840
  2. Agarwal, R. P., Li, W.-T., Pang, P. Y. H., 10.1080/1023619021000000735, J. Difference Equ. Appl. 8 (2002), 719-728. (2002) Zbl1010.39003MR1914599DOI10.1080/1023619021000000735
  3. Bohner, M., Fan, M., Zhang, J., 10.1016/j.nonrwa.2005.11.002, Nonlinear Anal., Real World Appl. 7 (2006), 1193-1204. (2006) Zbl1104.92057MR2260908DOI10.1016/j.nonrwa.2005.11.002
  4. Braverman, E., 10.1016/j.na.2004.12.015, Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), 751-759 (Electronic only). (2005) Zbl1222.92060DOI10.1016/j.na.2004.12.015
  5. Braverman, E., Saker, S. H., 10.1016/j.na.2006.09.056, Nonlinear Anal., Theory Methods Appl. 67 (2007), 2955-2965. (2007) Zbl1125.39002MR2348007DOI10.1016/j.na.2006.09.056
  6. Chen, F., Permanence in a discrete Lotka-Volterra competition model with deviating arguments, Nonlinear Anal., Real World Appl. 9 (2008), 2150-2155. (2008) Zbl1156.39300MR2441771
  7. Chen, F., 10.1016/j.aml.2006.08.023, Appl. Math. Lett. 20 (2007), 729-733. (2007) Zbl1128.92029MR2314699DOI10.1016/j.aml.2006.08.023
  8. Chen, F., Wu, L., Li, Z., 10.1016/j.camwa.2006.12.015, Comput. Math. Appl. 53 (2007), 1214-1227. (2007) Zbl1127.92038MR2327675DOI10.1016/j.camwa.2006.12.015
  9. Chen, X., Chen, F., 10.1016/j.amc.2006.02.039, Appl. Math. Comput. 181 (2006), 1446-1454. (2006) Zbl1106.39003MR2270776DOI10.1016/j.amc.2006.02.039
  10. Chen, Y., Zhou, Z., 10.1016/S0022-247X(02)00611-X, J. Math. Anal. Appl. 277 (2003), 358-366. (2003) Zbl1019.39004MR1954481DOI10.1016/S0022-247X(02)00611-X
  11. Douraki, M. J., Mashreghi, J., 10.1080/10236190701466504, J. Difference Equ. Appl. 14 (2008), 231-257. (2008) Zbl1135.92026MR2397323DOI10.1080/10236190701466504
  12. Emmert, K. E., Allen, L. J. S., 10.1080/10236190410001654151, J. Difference Equ. Appl. 10 (2004), 1177-1199. (2004) Zbl1067.92052MR2100721DOI10.1080/10236190410001654151
  13. Fan, M., Wang, Q., 10.3934/dcdsb.2004.4.563, Disc. Cont. Dyn. Syst., Ser. B 4 (2004), 563-574. (2004) Zbl1100.92064MR2073960DOI10.3934/dcdsb.2004.4.563
  14. Fan, Y.-H., Li, W.-T., 10.1016/j.jmaa.2004.02.061, J. Math. Anal. Appl. 299 (2004), 357-374. (2004) Zbl1063.39013MR2098248DOI10.1016/j.jmaa.2004.02.061
  15. Giang, D. V., Huong, D. C., 10.1016/j.jmaa.2004.11.035, J. Math. Anal. Appl. 305 (2005), 291-295. (2005) Zbl1096.92034MR2128128DOI10.1016/j.jmaa.2004.11.035
  16. Győri, I., Trofimchuk, S. I., 10.1080/10236190008808250, J. Difference Equ. Appl. 6 (2000), 647-665. (2000) MR1813210DOI10.1080/10236190008808250
  17. Huo, H.-F., Li, W.-T., 10.1016/j.aml.2004.07.002, Appl. Math. Letters 17 (2004), 1007-1013. (2004) Zbl1067.39009MR2087748DOI10.1016/j.aml.2004.07.002
  18. Kocic, V. L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Application, Kluwer Academic Publishers Dordrecht (1993). (1993) MR1247956
  19. Kon, R., 10.1007/s00285-003-0224-8, J. Math. Biol. 48 (2004), 57-81. (2004) Zbl1050.92045MR2035520DOI10.1007/s00285-003-0224-8
  20. Li, Y. K., Zhu, L. F., 10.1016/j.aml.2004.09.002, Appl. Math. Lett. 18 (2005), 61-67. (2005) Zbl1085.39009MR2121555DOI10.1016/j.aml.2004.09.002
  21. Liao, X., Ouyang, Z., Zhou, S., 10.1016/j.cam.2006.10.084, J. Comput. Appl. Math. 211 (2008), 1-10. (2008) Zbl1143.39005MR2386823DOI10.1016/j.cam.2006.10.084
  22. Liao, X., Zhou, S., Chen, Y., Permanence and global stability in a discrete n -species competition system with feedback controls, Nonlinear Anal., Real World Appl. 9 (2008), 1661-1671. (2008) Zbl1154.34352MR2422571
  23. Liao, L., Yu, J., Wang, L., 10.1016/S0898-1221(02)00265-1, Comput. Math. Appl. 44 (2002), 1403-1411. (2002) Zbl1043.93053MR1938776DOI10.1016/S0898-1221(02)00265-1
  24. Liu, Z., Chen, L., 10.1016/j.cam.2005.09.023, J. Comput. Appl. Math. 197 (2006), 446-456. (2006) Zbl1098.92066MR2260418DOI10.1016/j.cam.2005.09.023
  25. Liz, E., 10.1016/j.jmaa.2006.06.030, J. Math. Anal. Appl. 330 (2007), 740-743. (2007) Zbl1108.92033MR2302956DOI10.1016/j.jmaa.2006.06.030
  26. Liz, E., Tkachenko, V., Trofimchuk, S., 10.1016/j.mbs.2005.03.016, Math. Biosci. 199 (2006), 26-37. (2006) Zbl1086.92045MR2205557DOI10.1016/j.mbs.2005.03.016
  27. Lu, Z., Wang, W., 10.1007/s002850050171, J. Math. Biol. 39 (1999), 269-282. (1999) Zbl0945.92022MR1716315DOI10.1007/s002850050171
  28. Merdan, H., Duman, O., 10.1016/j.chaos.2007.08.081, Chaos Solitons Fractals 40 (2009), 1169-1175. (2009) Zbl1197.39009MR2526104DOI10.1016/j.chaos.2007.08.081
  29. Muroya, Y., 10.1016/j.jmaa.2006.07.070, J. Math. Anal. Appl. 330 (2007), 24-33. (2007) Zbl1124.39011MR2298155DOI10.1016/j.jmaa.2006.07.070
  30. Muroya, Y., 10.1016/j.jmaa.2003.12.033, J. Math. Anal. Appl. 293 (2004), 446-461. (2004) Zbl1059.39007MR2053890DOI10.1016/j.jmaa.2003.12.033
  31. Papaschinopoulos, G., Schinas, C. J., 10.1080/10236199808808146, J. Difference Equ. Appl. 4 (1998), 315-323. (1998) Zbl0913.39009MR1657224DOI10.1080/10236199808808146
  32. Sadhukhan, D., Mondal, B., Maiti, M., 10.1016/j.amc.2007.12.063, Appl. Math. Comput. 201 (2008), 631-639. (2008) Zbl1143.92041MR2431960DOI10.1016/j.amc.2007.12.063
  33. Saito, Y., Ma, W., Hara, T., 10.1006/jmaa.2000.7303, J. Math. Anal. Appl. 256 (2001), 162-174. (2001) Zbl0976.92031MR1820074DOI10.1006/jmaa.2000.7303
  34. Saker, S. H., 10.1016/j.mcm.2007.04.007, Math. Comput. Modelling 47 (2008), 278-297. (2008) Zbl1130.92044MR2378835DOI10.1016/j.mcm.2007.04.007
  35. Teng, Z., 10.1080/14689360110102312, Dyn. Syst. 17 (2002), 187-202. (2002) Zbl1035.34086MR1927807DOI10.1080/14689360110102312
  36. Wang, W., Mulone, G., Salemi, F., Salone, V., 10.1006/jmaa.2001.7666, J. Math. Anal. Appl. 264 (2001), 147-167. (2001) Zbl1006.92025MR1868334DOI10.1006/jmaa.2001.7666
  37. Xia, Y., Cao, J., Lin, M., Discrete-time analogues of predator-prey models with monotonic or nonmonotonic functional responses, Nonlinear Anal., Real World Appl. 8 (2007), 1079-1095. (2007) Zbl1127.39038MR2331428
  38. Xiong, X., Zhang, Z., 10.1016/j.mcm.2007.10.004, Math. Comput. Modelling 48 (2008), 333-343. (2008) Zbl1145.34334MR2431471DOI10.1016/j.mcm.2007.10.004
  39. Yang, X., 10.1016/j.jmaa.2005.04.036, J. Math. Anal. Appl. 316 (2006), 161-177. (2006) Zbl1107.39017MR2201755DOI10.1016/j.jmaa.2005.04.036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.