Periodic solutions to a p -Laplacian neutral Rayleigh equation with deviating argument

Bo Du; Xueping Hu

Applications of Mathematics (2011)

  • Volume: 56, Issue: 3, page 253-264
  • ISSN: 0862-7940

Abstract

top
By using the coincidence degree theory, we study a type of p -Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of T -periodic solutions.

How to cite

top

Du, Bo, and Hu, Xueping. "Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument." Applications of Mathematics 56.3 (2011): 253-264. <http://eudml.org/doc/116525>.

@article{Du2011,
abstract = {By using the coincidence degree theory, we study a type of $p$-Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of $T$-periodic solutions.},
author = {Du, Bo, Hu, Xueping},
journal = {Applications of Mathematics},
keywords = {deviating argument; neutral; coincidence degree theory; deviating argument; neutral; coincidence degree theory},
language = {eng},
number = {3},
pages = {253-264},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument},
url = {http://eudml.org/doc/116525},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Du, Bo
AU - Hu, Xueping
TI - Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 253
EP - 264
AB - By using the coincidence degree theory, we study a type of $p$-Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of $T$-periodic solutions.
LA - eng
KW - deviating argument; neutral; coincidence degree theory; deviating argument; neutral; coincidence degree theory
UR - http://eudml.org/doc/116525
ER -

References

top
  1. Gaines, R. E., Mawhin, J. L., Coincidence Degree, and Nonlinear Differential Equations, Springer Berlin (1977). (1977) Zbl0339.47031MR0637067
  2. Hale, J., Theory of Functional Differential Equations, 2nd ed, Springer New York (1977). (1977) Zbl0352.34001MR0508721
  3. Komanovskij, V. B., Nosov, V. R., Stability of Functional Differential Equations, Academic Press London (1986). (1986) MR0860947
  4. Kuang, Y., Delay Differential Equations: with Applications in Population Dynamics, Academic Press Boston (1993). (1993) Zbl0777.34002MR1218880
  5. Liu, B., Huang, L., 10.1016/j.jmaa.2005.08.069, J. Math. Anal. Appl. 322 (2006), 121-132. (2006) MR2238153DOI10.1016/j.jmaa.2005.08.069
  6. Lu, S., Ren, J., Ge, W., 10.1080/0003681031000103013, Appl. Anal. 82 (2003), 411-426. (2003) Zbl1044.34039MR1982886DOI10.1080/0003681031000103013
  7. Lu, S., Ge, W., 10.1016/j.amc.2003.08.044, Appl. Math. Comput. 157 (2004), 433-448. (2004) Zbl1059.34043MR2088265DOI10.1016/j.amc.2003.08.044
  8. Serra, E., 10.1016/0362-546X(91)90217-O, Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. (1991) Zbl0735.34066MR1118073DOI10.1016/0362-546X(91)90217-O
  9. Si, J., 10.1007/BF00131292, Appl. Math. Mech., Engl. Ed. 17 (1996), 29-37. (1996) MR1382460DOI10.1007/BF00131292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.