Periodic solutions to a -Laplacian neutral Rayleigh equation with deviating argument
Applications of Mathematics (2011)
- Volume: 56, Issue: 3, page 253-264
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDu, Bo, and Hu, Xueping. "Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument." Applications of Mathematics 56.3 (2011): 253-264. <http://eudml.org/doc/116525>.
@article{Du2011,
abstract = {By using the coincidence degree theory, we study a type of $p$-Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of $T$-periodic solutions.},
author = {Du, Bo, Hu, Xueping},
journal = {Applications of Mathematics},
keywords = {deviating argument; neutral; coincidence degree theory; deviating argument; neutral; coincidence degree theory},
language = {eng},
number = {3},
pages = {253-264},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument},
url = {http://eudml.org/doc/116525},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Du, Bo
AU - Hu, Xueping
TI - Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 253
EP - 264
AB - By using the coincidence degree theory, we study a type of $p$-Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of $T$-periodic solutions.
LA - eng
KW - deviating argument; neutral; coincidence degree theory; deviating argument; neutral; coincidence degree theory
UR - http://eudml.org/doc/116525
ER -
References
top- Gaines, R. E., Mawhin, J. L., Coincidence Degree, and Nonlinear Differential Equations, Springer Berlin (1977). (1977) Zbl0339.47031MR0637067
- Hale, J., Theory of Functional Differential Equations, 2nd ed, Springer New York (1977). (1977) Zbl0352.34001MR0508721
- Komanovskij, V. B., Nosov, V. R., Stability of Functional Differential Equations, Academic Press London (1986). (1986) MR0860947
- Kuang, Y., Delay Differential Equations: with Applications in Population Dynamics, Academic Press Boston (1993). (1993) Zbl0777.34002MR1218880
- Liu, B., Huang, L., 10.1016/j.jmaa.2005.08.069, J. Math. Anal. Appl. 322 (2006), 121-132. (2006) MR2238153DOI10.1016/j.jmaa.2005.08.069
- Lu, S., Ren, J., Ge, W., 10.1080/0003681031000103013, Appl. Anal. 82 (2003), 411-426. (2003) Zbl1044.34039MR1982886DOI10.1080/0003681031000103013
- Lu, S., Ge, W., 10.1016/j.amc.2003.08.044, Appl. Math. Comput. 157 (2004), 433-448. (2004) Zbl1059.34043MR2088265DOI10.1016/j.amc.2003.08.044
- Serra, E., 10.1016/0362-546X(91)90217-O, Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. (1991) Zbl0735.34066MR1118073DOI10.1016/0362-546X(91)90217-O
- Si, J., 10.1007/BF00131292, Appl. Math. Mech., Engl. Ed. 17 (1996), 29-37. (1996) MR1382460DOI10.1007/BF00131292
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.