A Limit-Point Criterion for Separated Dirac Operators and a Little Known Result on Riccati's Equation.
The operator , , , is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types and , respectively.
We study the inverse problem of recovering Sturm-Liouville operators on the half-line with a Bessel-type singularity inside the interval from the given Weyl function. The corresponding uniqueness theorem is proved, a constructive procedure for the solution of the inverse problem is provided, also necessary and sufficient conditions for the solvability of the inverse problem are obtained.
We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schrödinger operators on a compact interval [0, R] with separated boundary conditions at 0 and R. Most of our results are formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in terms of the resolvent...
The matrix KdV equation with a negative dispersion term is considered in the right upper quarter–plane. The evolution law is derived for the Weyl function of a corresponding auxiliary linear system. Using the low energy asymptotics of the Weyl functions, the unboundedness of solutions is obtained for some classes of the initial–boundary conditions.