Page 1 Next

Displaying 1 – 20 of 34

Showing per page

A study of an operator arising in the theory of circular plates

Leopold Herrmann (1988)

Aplikace matematiky

The operator L 0 : D L 0 H H , L 0 u = 1 r d d r r d d r 1 r d d r r d u d r , D L 0 = { u C 4 ( [ 0 , R ] ) , u ' ( 0 ) = u ' ' ' ' ( 0 ) = 0 , u ( R ) = u ' ( R ) = 0 } , H = L 2 , r ( 0 , R ) is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on L 0 (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types L 0 u = g and u t t + L 0 u = g , respectively.

An inverse problem for Sturm-Liouville operators on the half-line having Bessel-type singularity in an interior point

Alexey Fedoseev (2013)

Open Mathematics

We study the inverse problem of recovering Sturm-Liouville operators on the half-line with a Bessel-type singularity inside the interval from the given Weyl function. The corresponding uniqueness theorem is proved, a constructive procedure for the solution of the inverse problem is provided, also necessary and sufficient conditions for the solvability of the inverse problem are obtained.

Boundary Data Maps for Schrödinger Operators on a Compact Interval

S. Clark, F. Gesztesy, M. Mitrea (2010)

Mathematical Modelling of Natural Phenomena

We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schrödinger operators on a compact interval [0, R] with separated boundary conditions at 0 and R. Most of our results are formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in terms of the resolvent...

KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions

A. Sakhnovich (2012)

Mathematical Modelling of Natural Phenomena

The matrix KdV equation with a negative dispersion term is considered in the right upper quarter–plane. The evolution law is derived for the Weyl function of a corresponding auxiliary linear system. Using the low energy asymptotics of the Weyl functions, the unboundedness of solutions is obtained for some classes of the initial–boundary conditions.

Currently displaying 1 – 20 of 34

Page 1 Next