An accurate active set Newton algorithm for large scale bound constrained optimization
Li Sun; Guoping He; Yongli Wang; Changyin Zhou
Applications of Mathematics (2011)
- Volume: 56, Issue: 3, page 297-314
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSun, Li, et al. "An accurate active set Newton algorithm for large scale bound constrained optimization." Applications of Mathematics 56.3 (2011): 297-314. <http://eudml.org/doc/116526>.
@article{Sun2011,
abstract = {A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the present strategy and its comparison with some existing active set strategies.},
author = {Sun, Li, He, Guoping, Wang, Yongli, Zhou, Changyin},
journal = {Applications of Mathematics},
keywords = {active set; bound constraints; Newton method; strict complementarity; active set; bound constraints; Newton method; strict complementarity},
language = {eng},
number = {3},
pages = {297-314},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An accurate active set Newton algorithm for large scale bound constrained optimization},
url = {http://eudml.org/doc/116526},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Sun, Li
AU - He, Guoping
AU - Wang, Yongli
AU - Zhou, Changyin
TI - An accurate active set Newton algorithm for large scale bound constrained optimization
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 297
EP - 314
AB - A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the present strategy and its comparison with some existing active set strategies.
LA - eng
KW - active set; bound constraints; Newton method; strict complementarity; active set; bound constraints; Newton method; strict complementarity
UR - http://eudml.org/doc/116526
ER -
References
top- Coleman, T. F., Li, Y., 10.1007/BF01582221, Math. Program. 67 (1994), 189-224. (1994) Zbl0842.90106MR1305566DOI10.1007/BF01582221
- Coleman, T. F., Li, Y., 10.1137/0806023, SIAM J. Optim. 6 (1996), 418-445. (1996) Zbl0855.65063MR1387333DOI10.1137/0806023
- Conn, A. R., Gould, N. I. M., Toint, Ph. L., Testing a class of methods for solving minimization problems with simple bounds on the variables, ACM Trans. Math. Softw. 7 (1981), 17-41. (1981) MR1438096
- Conn, A. R., Gould, N. I. M., Toint, Ph. L., 10.1137/0725029, SIAM J. Numer. Anal. 25 (1988), 433-460. (1988) Zbl0643.65031MR0933734DOI10.1137/0725029
- Conn, A. R., Gould, N. I. M., Toint, Ph. L., 10.1137/0726044, SIAM J. Numer. Anal. 26 (1989), 764-767. (1989) Zbl0673.65033MR0997667DOI10.1137/0726044
- Dennis, J. E., Moré, J. J., 10.1090/S0025-5718-1974-0343581-1, Math. Comput. 28 (1974), 549-560. (1974) MR0343581DOI10.1090/S0025-5718-1974-0343581-1
- Dostál, Z., 10.1023/B:NUMA.0000005347.98806.b2, Numer. Algorithms 34 (2003), 293-302. (2003) Zbl1037.65061MR2043903DOI10.1023/B:NUMA.0000005347.98806.b2
- Facchinei, F., 10.1016/0167-6377(94)00059-F, Oper. Res. Lett. 17 (1995), 131-137. (1995) MR1342260DOI10.1016/0167-6377(94)00059-F
- Facchinei, F., Fischer, A., Kanzow, C., 10.1137/S1052623496305882, SIAM J. Optim. 9 (1998), 14-32. (1998) Zbl0960.90080MR1660110DOI10.1137/S1052623496305882
- Facchinei, F., Júdice, J., Soares, J., 10.1137/S1052623493253991, SIAM J. Optim. 8 (1998), 158-186. (1998) MR1617441DOI10.1137/S1052623493253991
- Facchinei, F., Júdice, J., Soares, J., 10.1145/275323.275331, ACM Trans. Math. Softw. 23 (1997), 443-447. (1997) DOI10.1145/275323.275331
- Facchinei, F., Lucidi, S., 10.1007/BF02192227, J. Optimization Theory Appl. 85 (1995), 265-289. (1995) Zbl0830.90125MR1333788DOI10.1007/BF02192227
- Facchinei, F., Lucidi, S., Palagi, L., 10.1137/S1052623499359890, SIAM J. Optim. 12 (2002), 1100-1125. (2002) Zbl1035.90103MR1922511DOI10.1137/S1052623499359890
- Fan, R. E., Chen, P. H., Lin, C. J., Working set selection using second order information for training support vector machines, J. Mach. Learn. Res. 6 (2005), 1889-1918. (2005) Zbl1222.68198MR2249875
- Gill, P. E., Murray, W., Wright, M. H., Practical Optimization, Academic Press London (1981). (1981) Zbl0503.90062MR0634376
- Hager, W. W., Zhang, H., 10.1137/050635225, SIAM J. Optim. 17 (2006), 526-557. (2006) Zbl1165.90570MR2247750DOI10.1137/050635225
- Heinkenschloss, M., Ulbrich, M., Ulbrich, S., 10.1007/s101070050107, Math. Program. 86 (1999), 615-635. (1999) Zbl0945.49023MR1733741DOI10.1007/s101070050107
- Keerthi, S. S., Gilbert, E. G., 10.1023/A:1012431217818, Mach. Learn. 46 (2002), 351-360. (2002) Zbl0998.68109DOI10.1023/A:1012431217818
- Lescrenier, M., 10.1137/0728026, SIAM J. Numer. Anal. 28 (1991), 476-495. (1991) Zbl0726.65068MR1087515DOI10.1137/0728026
- Lin, C. J., Moré, J. J., 10.1137/S1052623498345075, SIAM J. Optim. 9 (1999), 1100-1127. (1999) Zbl0957.65064MR1724778DOI10.1137/S1052623498345075
- Moré, J. J., Toraldo, G., 10.1137/0801008, SIAM J. Optim. 1 (1991), 93-113. (1991) MR1094793DOI10.1137/0801008
- Ni, Q., Yuan, Y., 10.1090/S0025-5718-97-00866-1, Math. Comput. 66 (1997), 1509-1520. (1997) Zbl0886.65065MR1422793DOI10.1090/S0025-5718-97-00866-1
- Nocedal, J., Wright, S. J., Numerical Optimization, Springer New York (2006). (2006) Zbl1104.65059MR2244940
- Oberlin, C., Wright, S. J., 10.1137/050626776, SIAM J. Optim. 17 (2006), 577-605. (2006) Zbl1174.90813MR2247752DOI10.1137/050626776
- Pillo, G. Di, Facchinei, F., Grippo, L., 10.1007/BF01581190, Math. Program. 55 (1992), 49-68. (1992) Zbl0767.90060MR1163293DOI10.1007/BF01581190
- Polyak, B. T., 10.1016/0041-5553(69)90035-4, U.S.S.R. Comput. Math. Math. Phys. 9 (1969), 94-112. (1969) Zbl0191.49003DOI10.1016/0041-5553(69)90035-4
- Schittkowski, K., More Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, Vol. 282, Springer Berlin (1987). (1987) MR1117683
- Sun, L., He, G. P., Wang, Y. L., Fang, L., 10.1016/j.camwa.2009.03.085, Comput. Math. Appl. 58 (2009), 161-170. (2009) Zbl1189.90160MR2535978DOI10.1016/j.camwa.2009.03.085
- Sun, L., Fang, L., He, G. P., 10.1007/s10492-010-0022-8, Appl. Math. 55 (2010), 291-304. (2010) Zbl1224.90176MR2737938DOI10.1007/s10492-010-0022-8
- Xiao, Y. H., Wei, Z. X., 10.1016/j.amc.2006.06.119, Appl. Math. Comput. 185 (2007), 350-359. (2007) Zbl1114.65069MR2298454DOI10.1016/j.amc.2006.06.119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.