Tangent Dirac structures of higher order
P. M. Kouotchop Wamba; A. Ntyam; J. Wouafo Kamga
Archivum Mathematicum (2011)
- Volume: 047, Issue: 1, page 17-22
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKouotchop Wamba, P. M., Ntyam, A., and Wouafo Kamga, J.. "Tangent Dirac structures of higher order." Archivum Mathematicum 047.1 (2011): 17-22. <http://eudml.org/doc/116530>.
@article{KouotchopWamba2011,
abstract = {Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that:
If $L$ is integrable then the tangent lift is also integrable.
In this paper, we generalize this lifting to tangent bundle of higher order.},
author = {Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.},
journal = {Archivum Mathematicum},
keywords = {Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformations; Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformation},
language = {eng},
number = {1},
pages = {17-22},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Tangent Dirac structures of higher order},
url = {http://eudml.org/doc/116530},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Kouotchop Wamba, P. M.
AU - Ntyam, A.
AU - Wouafo Kamga, J.
TI - Tangent Dirac structures of higher order
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 1
SP - 17
EP - 22
AB - Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that:
If $L$ is integrable then the tangent lift is also integrable.
In this paper, we generalize this lifting to tangent bundle of higher order.
LA - eng
KW - Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformations; Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformation
UR - http://eudml.org/doc/116530
ER -
References
top- Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D., The canonical isomorphism between and , C. R. Acad. Sci., Paris, Sér. II 309 (1989), 1509–1514. (1989) MR1033091
- Courant, T., 10.1088/0305-4470/23/22/010, J. Phys. A: Math. Gen. 23 (22) (1990), 5153–5168. (1990) Zbl0715.58013MR1085863DOI10.1088/0305-4470/23/22/010
- Courant, T., 10.1088/0305-4470/27/13/026, J. Phys. A: Math. Gen. 27 (13) (1994), 4527–4536. (1994) Zbl0843.58044MR1294955DOI10.1088/0305-4470/27/13/026
- Gancarzewicz, J., Mikulski, W., Pogoda, Z., Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1–41. (1994) Zbl0813.53010MR1295815
- Grabowski, J., Urbanski, P., 10.1088/0305-4470/28/23/024, J. Phys. A: Math. Gen. 28 (23) (1995), 6743–6777. (1995) Zbl0872.58028MR1381143DOI10.1088/0305-4470/28/23/024
- Kolář, I., Michor, P., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) MR1202431
- Morimoto, A., Lifting of some type of tensors fields and connections to tangent bundles of -velocities, Nagoya Math. J. 40 (1970), 13–31. (1970) MR0279720
- Ntyam, A., Wouafo Kamga, J., 10.4064/ap82-3-4, Ann. Pol. Math. 82 (3) (2003), 233–240. (2003) MR2040808DOI10.4064/ap82-3-4
Citations in EuDML Documents
top- P. M. Kouotchop Wamba, A. Ntyam, J. Wouafo Kamga, Some properties of tangent Dirac structures of higher order
- P. M. Kouotchop Wamba, A. Ntyam, Tangent lifts of higher order of multiplicative Dirac structures
- P. M. Kouotchop Wamba, A. MBA, The infinitesimal counterpart of tangent presymplectic groupoids of higher order
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.