Tangent Dirac structures of higher order

P. M. Kouotchop Wamba; A. Ntyam; J. Wouafo Kamga

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 1, page 17-22
  • ISSN: 0044-8753

Abstract

top
Let L be an almost Dirac structure on a manifold M . In [2] Theodore James Courant defines the tangent lifting of L on T M and proves that: If L is integrable then the tangent lift is also integrable. In this paper, we generalize this lifting to tangent bundle of higher order.

How to cite

top

Kouotchop Wamba, P. M., Ntyam, A., and Wouafo Kamga, J.. "Tangent Dirac structures of higher order." Archivum Mathematicum 047.1 (2011): 17-22. <http://eudml.org/doc/116530>.

@article{KouotchopWamba2011,
abstract = {Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that: If $L$ is integrable then the tangent lift is also integrable. In this paper, we generalize this lifting to tangent bundle of higher order.},
author = {Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.},
journal = {Archivum Mathematicum},
keywords = {Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformations; Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformation},
language = {eng},
number = {1},
pages = {17-22},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Tangent Dirac structures of higher order},
url = {http://eudml.org/doc/116530},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Kouotchop Wamba, P. M.
AU - Ntyam, A.
AU - Wouafo Kamga, J.
TI - Tangent Dirac structures of higher order
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 1
SP - 17
EP - 22
AB - Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that: If $L$ is integrable then the tangent lift is also integrable. In this paper, we generalize this lifting to tangent bundle of higher order.
LA - eng
KW - Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformations; Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformation
UR - http://eudml.org/doc/116530
ER -

References

top
  1. Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D., The canonical isomorphism between T k T * and T * T k , C. R. Acad. Sci., Paris, Sér. II 309 (1989), 1509–1514. (1989) MR1033091
  2. Courant, T., 10.1088/0305-4470/23/22/010, J. Phys. A: Math. Gen. 23 (22) (1990), 5153–5168. (1990) Zbl0715.58013MR1085863DOI10.1088/0305-4470/23/22/010
  3. Courant, T., 10.1088/0305-4470/27/13/026, J. Phys. A: Math. Gen. 27 (13) (1994), 4527–4536. (1994) Zbl0843.58044MR1294955DOI10.1088/0305-4470/27/13/026
  4. Gancarzewicz, J., Mikulski, W., Pogoda, Z., Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1–41. (1994) Zbl0813.53010MR1295815
  5. Grabowski, J., Urbanski, P., 10.1088/0305-4470/28/23/024, J. Phys. A: Math. Gen. 28 (23) (1995), 6743–6777. (1995) Zbl0872.58028MR1381143DOI10.1088/0305-4470/28/23/024
  6. Kolář, I., Michor, P., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) MR1202431
  7. Morimoto, A., Lifting of some type of tensors fields and connections to tangent bundles of p r -velocities, Nagoya Math. J. 40 (1970), 13–31. (1970) MR0279720
  8. Ntyam, A., Wouafo Kamga, J., 10.4064/ap82-3-4, Ann. Pol. Math. 82 (3) (2003), 233–240. (2003) MR2040808DOI10.4064/ap82-3-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.