The infinitesimal counterpart of tangent presymplectic groupoids of higher order

P.M. Kouotchop Wamba; A. MBA

Archivum Mathematicum (2018)

  • Volume: 054, Issue: 3, page 135-151
  • ISSN: 0044-8753

Abstract

top
Let G , ω be a presymplectic groupoid. In this paper we characterize the infinitesimal counter part of the tangent presymplectic groupoid of higher order, ( T r G , ω c ) where T r G is the tangent groupoid of higher order and ω c is the complete lift of higher order of presymplectic form ω .

How to cite

top

Kouotchop Wamba, P.M., and MBA, A.. "The infinitesimal counterpart of tangent presymplectic groupoids of higher order." Archivum Mathematicum 054.3 (2018): 135-151. <http://eudml.org/doc/294152>.

@article{KouotchopWamba2018,
abstract = {Let $\left(G, \omega \right)$ be a presymplectic groupoid. In this paper we characterize the infinitesimal counter part of the tangent presymplectic groupoid of higher order, $(T^\{r\}G, \omega ^\{\left(c\right)\})$ where $T^\{r\}G$ is the tangent groupoid of higher order and $\omega ^\{\left(c\right)\}$ is the complete lift of higher order of presymplectic form $\omega $.},
author = {Kouotchop Wamba, P.M., MBA, A.},
journal = {Archivum Mathematicum},
keywords = {IM-2 forms; complete lifts of vector fields and differential forms; twisted-Dirac structures; tangent functor of higher order; natural transformations},
language = {eng},
number = {3},
pages = {135-151},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The infinitesimal counterpart of tangent presymplectic groupoids of higher order},
url = {http://eudml.org/doc/294152},
volume = {054},
year = {2018},
}

TY - JOUR
AU - Kouotchop Wamba, P.M.
AU - MBA, A.
TI - The infinitesimal counterpart of tangent presymplectic groupoids of higher order
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 3
SP - 135
EP - 151
AB - Let $\left(G, \omega \right)$ be a presymplectic groupoid. In this paper we characterize the infinitesimal counter part of the tangent presymplectic groupoid of higher order, $(T^{r}G, \omega ^{\left(c\right)})$ where $T^{r}G$ is the tangent groupoid of higher order and $\omega ^{\left(c\right)}$ is the complete lift of higher order of presymplectic form $\omega $.
LA - eng
KW - IM-2 forms; complete lifts of vector fields and differential forms; twisted-Dirac structures; tangent functor of higher order; natural transformations
UR - http://eudml.org/doc/294152
ER -

References

top
  1. Bursztyn, H., A., Cabrera, 10.1007/s00208-011-0697-5, Math. Ann. 353 (2012), 663–705. (2012) MR2923945DOI10.1007/s00208-011-0697-5
  2. Bursztyn, H., Crainic, M., Weinstein, A., Zhu, C., 10.1215/S0012-7094-04-12335-8, Duke Math. J. 123 (2004), 549–607. (2004) MR2068969DOI10.1215/S0012-7094-04-12335-8
  3. Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D., The canonical isomorphism between T k T * and T * T k , C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 1509–1514. (1989) MR1033091
  4. Coste, A., Dazord, P., Weinstein, A., Groupoïdes symplectiques, Publ. Dep. Math. Nouvelle Ser. A2, Univ. Claude-Bernard, Lyon 2 (1987), 1–62. (1987) MR0996653
  5. Courant, T.J., 10.1090/S0002-9947-1990-0998124-1, Trans. Amer. Math. Soc. 319 (1990), 631–661. (1990) MR0998124DOI10.1090/S0002-9947-1990-0998124-1
  6. del Hoyo, M., Ortiz, C., Morita equivalences of vector bundles, arXiv: 1612. 09289v2 [math. DG], 4 Apr. 2017, 2017. (2017) MR3679884
  7. Gancarzewicz, J., Mikulski, W., Pogoda, Z., 10.1017/S0027763000004931, Nagoya Math. J. 135 (1994), 1–41. (1994) Zbl0813.53010MR1295815DOI10.1017/S0027763000004931
  8. Kolář, I., Michor, P., Slovák, J., Natural operations in differential geometry, Springer-Verlag, 1993. (1993) Zbl0782.53013MR1202431
  9. Kouotchop Wamba, P.M., Ntyam, A., 10.5817/AM2013-2-87, Arch. Math. (Brno) 49 (2013), 87–104. (2013) MR3118866DOI10.5817/AM2013-2-87
  10. Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J., Some properties of tangent Dirac structures of higher order, Arch. Math. (Brno) 48 (2012), 17–22. (2012) MR2813543
  11. Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J., Tangent lift of higher order of multivector fields and applications, J. Math. Sci. Adv. Appl. 15 (2012), 89–112. (2012) MR3058846
  12. Mackenzie, K., 10.1142/S0129167X99000185, Internat. J. Math. 10 (1999), 435–456. (1999) MR1697617DOI10.1142/S0129167X99000185
  13. Mackenzie, K., Theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser. 213 (2005). (2005) MR2157566
  14. Morimoto, A., 10.1017/S0027763000013830, Nagoya Math. J. 40 (1970), 13–31. (1970) MR0279720DOI10.1017/S0027763000013830
  15. Ortiz, C., B-field transformations of Poisson groupoids, Proceedings of the Second Latin Congress on Symmetries in Geometry and Physics, Matemática Contemporânea, vol. 41, 2012, pp. 113–148. (2012) MR3087576
  16. Vaisman, I., Lectures on the geometry of Poisson manifolds, vol. 118, Progress in Math., Birkhäuser, 1994. (1994) Zbl0810.53019MR1269545
  17. Wouafo Kamga, J., On the tangential linearization of Hamiltonian systems, International Centre for Theoretical Physics, Trieste, 1997. (1997) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.