The infinitesimal counterpart of tangent presymplectic groupoids of higher order
Archivum Mathematicum (2018)
- Volume: 054, Issue: 3, page 135-151
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKouotchop Wamba, P.M., and MBA, A.. "The infinitesimal counterpart of tangent presymplectic groupoids of higher order." Archivum Mathematicum 054.3 (2018): 135-151. <http://eudml.org/doc/294152>.
@article{KouotchopWamba2018,
abstract = {Let $\left(G, \omega \right)$ be a presymplectic groupoid. In this paper we characterize the infinitesimal counter part of the tangent presymplectic groupoid of higher order, $(T^\{r\}G, \omega ^\{\left(c\right)\})$ where $T^\{r\}G$ is the tangent groupoid of higher order and $\omega ^\{\left(c\right)\}$ is the complete lift of higher order of presymplectic form $\omega $.},
author = {Kouotchop Wamba, P.M., MBA, A.},
journal = {Archivum Mathematicum},
keywords = {IM-2 forms; complete lifts of vector fields and differential forms; twisted-Dirac structures; tangent functor of higher order; natural transformations},
language = {eng},
number = {3},
pages = {135-151},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The infinitesimal counterpart of tangent presymplectic groupoids of higher order},
url = {http://eudml.org/doc/294152},
volume = {054},
year = {2018},
}
TY - JOUR
AU - Kouotchop Wamba, P.M.
AU - MBA, A.
TI - The infinitesimal counterpart of tangent presymplectic groupoids of higher order
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 3
SP - 135
EP - 151
AB - Let $\left(G, \omega \right)$ be a presymplectic groupoid. In this paper we characterize the infinitesimal counter part of the tangent presymplectic groupoid of higher order, $(T^{r}G, \omega ^{\left(c\right)})$ where $T^{r}G$ is the tangent groupoid of higher order and $\omega ^{\left(c\right)}$ is the complete lift of higher order of presymplectic form $\omega $.
LA - eng
KW - IM-2 forms; complete lifts of vector fields and differential forms; twisted-Dirac structures; tangent functor of higher order; natural transformations
UR - http://eudml.org/doc/294152
ER -
References
top- Bursztyn, H., A., Cabrera, 10.1007/s00208-011-0697-5, Math. Ann. 353 (2012), 663–705. (2012) MR2923945DOI10.1007/s00208-011-0697-5
- Bursztyn, H., Crainic, M., Weinstein, A., Zhu, C., 10.1215/S0012-7094-04-12335-8, Duke Math. J. 123 (2004), 549–607. (2004) MR2068969DOI10.1215/S0012-7094-04-12335-8
- Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D., The canonical isomorphism between and , C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 1509–1514. (1989) MR1033091
- Coste, A., Dazord, P., Weinstein, A., Groupoïdes symplectiques, Publ. Dep. Math. Nouvelle Ser. A2, Univ. Claude-Bernard, Lyon 2 (1987), 1–62. (1987) MR0996653
- Courant, T.J., 10.1090/S0002-9947-1990-0998124-1, Trans. Amer. Math. Soc. 319 (1990), 631–661. (1990) MR0998124DOI10.1090/S0002-9947-1990-0998124-1
- del Hoyo, M., Ortiz, C., Morita equivalences of vector bundles, arXiv: 1612. 09289v2 [math. DG], 4 Apr. 2017, 2017. (2017) MR3679884
- Gancarzewicz, J., Mikulski, W., Pogoda, Z., 10.1017/S0027763000004931, Nagoya Math. J. 135 (1994), 1–41. (1994) Zbl0813.53010MR1295815DOI10.1017/S0027763000004931
- Kolář, I., Michor, P., Slovák, J., Natural operations in differential geometry, Springer-Verlag, 1993. (1993) Zbl0782.53013MR1202431
- Kouotchop Wamba, P.M., Ntyam, A., 10.5817/AM2013-2-87, Arch. Math. (Brno) 49 (2013), 87–104. (2013) MR3118866DOI10.5817/AM2013-2-87
- Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J., Some properties of tangent Dirac structures of higher order, Arch. Math. (Brno) 48 (2012), 17–22. (2012) MR2813543
- Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J., Tangent lift of higher order of multivector fields and applications, J. Math. Sci. Adv. Appl. 15 (2012), 89–112. (2012) MR3058846
- Mackenzie, K., 10.1142/S0129167X99000185, Internat. J. Math. 10 (1999), 435–456. (1999) MR1697617DOI10.1142/S0129167X99000185
- Mackenzie, K., Theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser. 213 (2005). (2005) MR2157566
- Morimoto, A., 10.1017/S0027763000013830, Nagoya Math. J. 40 (1970), 13–31. (1970) MR0279720DOI10.1017/S0027763000013830
- Ortiz, C., B-field transformations of Poisson groupoids, Proceedings of the Second Latin Congress on Symmetries in Geometry and Physics, Matemática Contemporânea, vol. 41, 2012, pp. 113–148. (2012) MR3087576
- Vaisman, I., Lectures on the geometry of Poisson manifolds, vol. 118, Progress in Math., Birkhäuser, 1994. (1994) Zbl0810.53019MR1269545
- Wouafo Kamga, J., On the tangential linearization of Hamiltonian systems, International Centre for Theoretical Physics, Trieste, 1997. (1997)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.