Relaxation of singular functionals defined on Sobolev spaces
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 5, page 71-85
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBen Belgacem, Hafedh. "Relaxation of singular functionals defined on Sobolev spaces." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 71-85. <http://eudml.org/doc/116558>.
@article{BenBelgacem2010,
abstract = {
In this paper, we consider a Borel
measurable function on
the space of
$\scriptstyle m\times n$ matrices $\scriptstyle f:
M^\{m\times n\}\rightarrow \bar\{\mathbb\{R\}\}$
taking the value
$ \scriptstyle +\infty$, such that its rank-one-convex
envelope
$\scriptstyle Rf$ is finite and satisfies for some fixed
$\scriptstyle p>1$:
$$\scriptstyle -c\_0\leq Rf(F)\leq c(1+\Vert F\Vert^p)\
\hbox\{for all\}\ F\in
M^\{m\times n\},$$
where
$\scriptstyle c,c_0>0$. Let $\scriptstyle\O$ be a given
regular bounded
open domain of
$\scriptstyle \mathbb\{R\}^n$. We define on $\scriptstyle
W^\{1,p\}(\O;\mathbb\{R\}^m)$
the functional
$$\scriptstyle I(u)=\int\_\{\O\}f(\nabla u(x))\ dx.$$
Then, under some technical restrictions on
$\scriptstyle f$, we show that the relaxed functional
$\scriptstyle\bar I$
for the weak topology
of
$\scriptstyle W^\{1,p\}(\O;\mathbb\{R\}^m)$ has the integral
representation:
$$\scriptstyle \bar I(u)=\int\_\{\O\}Q[Rf](\nabla u(x))\
dx,$$
where for a given function $\scriptstyle g$,
$\scriptstyle Qg$ denotes its
quasiconvex envelope.
},
author = {Ben Belgacem, Hafedh},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Rank-one convexity; quasiconvexity; weak lower semicontinuity.; rank-one convexity; weak lower semicontinuity; relaxation; integral functional},
language = {eng},
month = {3},
pages = {71-85},
publisher = {EDP Sciences},
title = {Relaxation of singular functionals defined on Sobolev spaces},
url = {http://eudml.org/doc/116558},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Ben Belgacem, Hafedh
TI - Relaxation of singular functionals defined on Sobolev spaces
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 71
EP - 85
AB -
In this paper, we consider a Borel
measurable function on
the space of
$\scriptstyle m\times n$ matrices $\scriptstyle f:
M^{m\times n}\rightarrow \bar{\mathbb{R}}$
taking the value
$ \scriptstyle +\infty$, such that its rank-one-convex
envelope
$\scriptstyle Rf$ is finite and satisfies for some fixed
$\scriptstyle p>1$:
$$\scriptstyle -c_0\leq Rf(F)\leq c(1+\Vert F\Vert^p)\
\hbox{for all}\ F\in
M^{m\times n},$$
where
$\scriptstyle c,c_0>0$. Let $\scriptstyle\O$ be a given
regular bounded
open domain of
$\scriptstyle \mathbb{R}^n$. We define on $\scriptstyle
W^{1,p}(\O;\mathbb{R}^m)$
the functional
$$\scriptstyle I(u)=\int_{\O}f(\nabla u(x))\ dx.$$
Then, under some technical restrictions on
$\scriptstyle f$, we show that the relaxed functional
$\scriptstyle\bar I$
for the weak topology
of
$\scriptstyle W^{1,p}(\O;\mathbb{R}^m)$ has the integral
representation:
$$\scriptstyle \bar I(u)=\int_{\O}Q[Rf](\nabla u(x))\
dx,$$
where for a given function $\scriptstyle g$,
$\scriptstyle Qg$ denotes its
quasiconvex envelope.
LA - eng
KW - Rank-one convexity; quasiconvexity; weak lower semicontinuity.; rank-one convexity; weak lower semicontinuity; relaxation; integral functional
UR - http://eudml.org/doc/116558
ER -
References
top- E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elasticity25 (1991) 137-148.
- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal.86 (1984) 125-145.
- G. Anzellotti, S. Baldo and D. Percivale, Dimension reduction in variational problems, asymptotic development in -convergence, and thin structures in elasticity. Asymptot. Anal.9 (1994) 61-100.
- J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal.63 (1977) 337-403.
- J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225-253.
- J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal.100 (1987) 13-52.
- H. Ben Belgacem, Une méthode de -convergence pour un modèle de membrane non linéaire. C. R. Acad. Sci. Paris. Sér. I Math. (1996) 845-849.
- H. Ben Belgacem, Modélisation de structures minces en élasticité non linéaire. Thèse de l'Université Pierre et Marie Curie, Paris (1996).
- G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 463-479.
- P.G. Ciarlet, Mathematical Elasticity. Vol. I: Three-dimensional Elasticity. North-Holland, Amesterdam (1988).
- B. Dacorogna, Quasiconvexity and relaxation of non convex problems in the calculus of variations. J. Funct. Anal.46 (1982) 102-118.
- B. Dacorogna, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. J. Math. Pures Appl.64 (1985) 403-438.
- B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1989).
- B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectoriel cases. Acta Math.178 (1997) 1-37.
- I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris (1974).
- I. Fonseca, The lower quasiconvex envelope of the stored energy for an elastic crystal. J. Math. Pures Appl.67 (1988) 175-195.
- I. Fonseca, Variational techniques for problems in materials science. Progr. Nonlinear Differential Equations Appl.25 (1996) 162-175.
- I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré14 (1997) 309-338.
- R.V. Kohn and G. Strang, Explicit relaxation of a variational problem in optimal design. Bull. Amer. Math. Soc.9 (1983) 211-214.
- R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I, II and III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377.
- H. Le Dret and A. Raoult, Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle. C. R. Acad. Sci. Paris Sér. I Math. (1993) 221-226.
- H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of three-dimensional nonlinear elasticity. J. Math. Pures Appl.74 (1995) 549-578.
- P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math.51 (1985) 1-28.
- P. Marcellini, On the definition and weak lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré3 (1986) 391-409.
- C.B. Morrey Jr., Quasi-convexity and the lower semi-continuity of multiple integrals. Pacific J. Math.2 (1952) 25-53.
- C.B. Morrey Jr., Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966).
- S. Müller, Variational models for microstructure and phase transitions, to appear in Proc. C.I.M.E. summer school ``Calculus of variations and geometric evolution problems''. Cetraro (1996).
- R.W. Ogden, Large deformation isotropic elasticity: On the correlation of the theory and experiment for compressible rubberlike solids. Proc. Roy. Soc. London Ser. A 328 (1972).
- E.T. Rockafellar, Convex Analysis. Princeton University Press (1970).
- L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symp. Vol. IV, R.J. Knops Ed. Pitman, London (1979).
- V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems. C. R. Acad. Sci. Paris Sér. I Math. (1993) 435-439.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.