On the definition and the lower semicontinuity of certain quasiconvex integrals
Annales de l'I.H.P. Analyse non linéaire (1986)
- Volume: 3, Issue: 5, page 391-409
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMarcellini, Paolo. "On the definition and the lower semicontinuity of certain quasiconvex integrals." Annales de l'I.H.P. Analyse non linéaire 3.5 (1986): 391-409. <http://eudml.org/doc/78120>.
@article{Marcellini1986,
author = {Marcellini, Paolo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasiconvexity; lower semicontinuity; existence of minima},
language = {eng},
number = {5},
pages = {391-409},
publisher = {Gauthier-Villars},
title = {On the definition and the lower semicontinuity of certain quasiconvex integrals},
url = {http://eudml.org/doc/78120},
volume = {3},
year = {1986},
}
TY - JOUR
AU - Marcellini, Paolo
TI - On the definition and the lower semicontinuity of certain quasiconvex integrals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 5
SP - 391
EP - 409
LA - eng
KW - quasiconvexity; lower semicontinuity; existence of minima
UR - http://eudml.org/doc/78120
ER -
References
top- [1] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal., t. 86, 1984, p. 125-145. Zbl0565.49010MR751305
- [2] S.S. Antman, The influence of elasticity on analysis: modern developments, Bull. Amer. Math. Soc., t. 9, 1983, p. 267-291. Zbl0533.73001MR714990
- [3] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., t. 63, 1977, p. 337-403. Zbl0368.73040MR475169
- [4] J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. R. Soc. Lond., t. 306, 1982, p. 557-611. Zbl0513.73020MR703623
- [5] J.M. Ball, F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals, J. Functional Analysis, t. 58, 1984, p. 225-253. Zbl0549.46019MR759098
- [6] B. Dacorogna, Weak continuity and weak lower semicontinuity of nonlinear functionals, Lecture Notes in Math., t. 922, 1982, Springer-Verlag, Berlin. Zbl0484.46041MR658130
- [7] G. Dal Maso, Integral representation on BV(Ω) of Γ-limits of variational integrals, Manuscripta Math., t. 30, 1980, p. 387-416. Zbl0435.49016MR567216
- [8] E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni, Istituto Nazionale di Alta Matematica, Roma, 1968-1969.
- [9] E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area, Rendiconti Mat., t. 8, 1975, p. 277-294. Zbl0316.35036MR375037
- [10] C.L. Evans, Quasiconvexity and partial regularity in the calculus of variations, preprint. Zbl0627.49006
- [11] F. Ferro, Functionals defined on functions of bounded variation in Rn and the Lebesgue area, SIA M J. Control Optimization, t. 16, 1978, p. 778-789. Zbl0382.46017MR505379
- [12] M. Giaquinta, G. Modica, J. Soucek, Functionals with linear growth in the calculus of variations I, Commentationes Math. Univ. Carolinae, t. 20, 1979, p. 143-172. Zbl0421.49010MR526154
- [13] M. Giaquinta, G. Modica, Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non linéaire, to appear. Zbl0594.49004MR847306
- [14] E. Giusti, Non-parametric minimal surfaces with discontinuous and thin obstacles, Arch. Rat. Mech. Anal., t. 49, 1972, p. 41-56. Zbl0257.49015MR346640
- [15] R.J. Knops, C.A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rat. Mech. Anal., t. 86, 1984, p. 233-249. Zbl0589.73017MR751508
- [16] R.V. Kohn, G. Strang, Optimal design and relaxation of variational problems, preprint. Zbl0609.49008
- [17] H. Lebesgue, Intégrale, longueur, aire, Ann. Mat. Pura Appl., t. 7, 1902, p. 231-359. JFM33.0307.02
- [18] P. Marcellini, Quasiconvex quadratic forms in two dimensions, Appl. Math. Optimization, t. 11, 1984, p. 183-189. Zbl0567.49007MR743926
- [19] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math., t. 51, 1985, p. 1-28. Zbl0573.49010MR788671
- [20] P. Marcellini, C. Sbordone, On the existence of minima of multiple integrals of the calculus of variations, J. Math. Pures Appl., t. 62, 1983, p. 1-9. Zbl0516.49011MR700045
- [21] N. Meyers, Quasiconvexity and lower semicontinuity of multiple integrals of any order, Trans. Amer. Math. Soc., t. 119, 1965, p. 125-149. Zbl0166.38501MR188838
- [22] M. Miranda. Un teorema di esistenza e unicità per il problema dell'area minima in n variabili, Ann. Scuola Norm. Sup. Pisa, t. 19. 1965, p. 233-249. Zbl0137.08201MR181918
- [23] C.B. Morrey, Multiple integrals in the calculus of variations, 1966, Springer-Verlag, Berlin. Zbl0142.38701MR202511
- [24] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., t. 101. 1961, p. 139-167. Zbl0102.04601MR138018
Citations in EuDML Documents
top- Giulia Sargenti, Continuity results for solutions of certain degenerate parabolic equations
- Hafedh Ben Belgacem, Relaxation of singular functionals defined on Sobolev spaces
- Hafedh Ben Belgacem, Relaxation of singular functionals defined on Sobolev spaces
- Bernard Botteron, Paolo Marcellini, A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations
- Parth Soneji, Relaxation in BV of integrals with superlinear growth
- Parth Soneji, Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth
- Irene Fonseca, Jan Malý, Relaxation of multiple integrals below the growth exponent
- Flavia Giannetti, Anna Verde, Lower semicontinuity of a class of multiple integrals below the growth exponent
- Sabine Schemm, Partial regularity of minimizers of higher order integrals with (, )-growth
- Luigi Ambrosio, Francesco Ghiraldin, Compactness of Special Functions of Bounded Higher Variation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.