# Stabilization of second order evolution equations by a class of unbounded feedbacks

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 6, page 361-386
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topAmmari, Kais, and Tucsnak, Marius. "Stabilization of second order evolution equations by a class of unbounded feedbacks." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 361-386. <http://eudml.org/doc/116574>.

@article{Ammari2010,

abstract = {
In this paper we consider second order evolution equations with unbounded feedbacks.
Under a regularity assumption we show that observability properties for the undamped
problem imply decay estimates for the damped problem. We consider both uniform and
non uniform decay properties.
},

author = {Ammari, Kais, Tucsnak, Marius},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Stabilization; observability inequality; second order evolution equations;
unbounded feedbacks.; stabilization by feedback; infinite dimensional systems; controllability; observability; exponential stability; decay rate},

language = {eng},

month = {3},

pages = {361-386},

publisher = {EDP Sciences},

title = {Stabilization of second order evolution equations by a class of unbounded feedbacks},

url = {http://eudml.org/doc/116574},

volume = {6},

year = {2010},

}

TY - JOUR

AU - Ammari, Kais

AU - Tucsnak, Marius

TI - Stabilization of second order evolution equations by a class of unbounded feedbacks

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 6

SP - 361

EP - 386

AB -
In this paper we consider second order evolution equations with unbounded feedbacks.
Under a regularity assumption we show that observability properties for the undamped
problem imply decay estimates for the damped problem. We consider both uniform and
non uniform decay properties.

LA - eng

KW - Stabilization; observability inequality; second order evolution equations;
unbounded feedbacks.; stabilization by feedback; infinite dimensional systems; controllability; observability; exponential stability; decay rate

UR - http://eudml.org/doc/116574

ER -

## References

top- K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM. J. Control Optim.39 (2000) 1160-1181.
- K. Ammari, A. Henrot and M. Tucsnak, Optimal location of the actuator for the pointwise stabilization of a string. C. R. Acad. Sci. Paris Sér. I Math.330 (2000) 275-280.
- A. Bamberger, J. Rauch and M. Taylor, A model for harmonics on stringed instruments. Arch. Rational Mech. Anal.79 (1982) 267-290.
- C. Bardos, L. Halpern, G. Lebeau, J. Rauch and E. Zuazua, Stabilisation de l'équation des ondes au moyen d'un feedback portant sur la condition aux limites de Dirichlet. Asymptot. Anal.4 (1991) 285-291.
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024-1065.
- A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite Dimensional Systems, Vol. I. Birkhauser (1992).
- J.W.S. Cassals, An introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1966).
- G. Doetsch, Introduction to the theory and application of the Laplace transformation. Springer, Berlin (1974).
- A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal Math.46 (1989) 245-258.
- A.E. Ingham, Some trigonometrical inequalities with applications in the theory of series. Math. Z.41 (1936) 367-369.
- S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Differential Equations145 (1998) 184-215.
- V. Komornik, Rapid boundary stabilization of linear distributed systems. SIAM J. Control Optim.35 (1997) 1591-1613.
- V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl.69 (1990) 33-54.
- J. Lagnese, Boundary stabilization of thin plates. Philadelphia, SIAM Stud. Appl. Math. (1989).
- S. Lang, Introduction to diophantine approximations. Addison Wesley, New York (1966).
- J.L. Lions, Contrôlabilité exacte des systèmes distribués. Masson, Paris (1998).
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
- F.W.J. Olver, Asymptotic and Special Functions. Academic Press, New York.
- A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer, New York (1983).
- R. Rebarber, Exponential stability of beams with dissipative joints: A frequency approach. SIAM J. Control Optim.33 (1995) 1-28.
- L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptot. Anal.10 (1995) 95-115.
- D.L. Russell, Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods. J. Differential Equations19 (1975) 344-370.
- D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent and open questions. SIAM Rev.20 (1978) 639-739.
- H. Triebel, Interpolation theory, function spaces, differential operators. North Holland, Amsterdam (1978).
- M. Tucsnak, Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J. Control Optim.34 (1996) 922-930.
- M. Tucsnak and G. Weiss, How to get a conservative well posed linear system out of thin air. Preprint.
- G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press.
- G. Weiss, Regular linear systems with feedback. Math. Control Signals Systems7 (1994) 23-57.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.