Stabilisation d'un modèle d'interaction fluide-structure

Kais Ammari

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 2, page 225-254
  • ISSN: 0240-2963

How to cite

top

Ammari, Kais. "Stabilisation d'un modèle d'interaction fluide-structure." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (2001): 225-254. <http://eudml.org/doc/73544>.

@article{Ammari2001,
author = {Ammari, Kais},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {fre},
number = {2},
pages = {225-254},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Stabilisation d'un modèle d'interaction fluide-structure},
url = {http://eudml.org/doc/73544},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Ammari, Kais
TI - Stabilisation d'un modèle d'interaction fluide-structure
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 225
EP - 254
LA - fre
UR - http://eudml.org/doc/73544
ER -

References

top
  1. [1] Allibert ( B.) and Micu ( S.) . - Controllability of analytic functioncs for a wave equation coupled with a beam, Rev. Mat. Iberoamericana., 15 (1999), 547-592. Zbl0946.35045MR1742216
  2. [2] Ammari ( K.). — Stabilisation d'une classe d'équations d'évolution du deuxième ordre en temps, Thèse de doctorat de l'École Polytechnique, 2000. 
  3. [3] Ammari ( K.) and Tucsnak ( M.). — Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM Control Optim. Calc. Var, à paraître. Zbl0992.93039MR1836048
  4. [4] Ammari ( K.) and Tucsnak ( M.). — Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, SIAM J. Control. Optim., 39 (2000), 1160-1181. Zbl0983.35021MR1814271
  5. [5] Avalos ( G.), Lasiecka ( I.) and Rebarber ( R.). — Lack of time-delay robustness for stabilization of a structural acoustics model, SIAM. J. Control. Optim., 37 (2000), 1394-1418. Zbl0947.93020MR1710226
  6. [6] Avalos ( G.) and Lasiecka ( I.). - A differential Riccati equation for the active control of a problem in structural acoustics, J. Optim. Theory Appl.91 (1996), 695-728. Zbl0869.93023MR1419861
  7. [7] Banks ( H.T.), Fang ( W.), Silox ( R.J.) and Smith ( R.C.). - Approximation methods for control of acoustic/structure models with piezoceramic actuators, Journal of intelligent Material systems and Structures., 4 (1993), 98-116. 
  8. [8] Bardos ( C.), Lebeau ( G.) and Rauch ( J.). — Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. Zbl0786.93009MR1178650
  9. [9] Bensoussan ( A.), Da Prato ( G.), Delfour ( M.) and Mitter ( S.). Representation and Control of Infinite Dimensional Systems, vol. 1, Birkhäuser, Boston, 1992. Zbl0781.93002MR1182557
  10. [10] Dafermos ( C.). - Asymptotic behavior of solutions of evolution equations in "Nonlinear evolution equations" (M.G. Crandall, Ed.), 103-123, Academic Press, New York, 1978. Zbl0499.35015MR513814
  11. [11] Doetsch ( G.). - Introduction to the theory and application of the Laplace transformation, Springer, Berlin, 1974. Zbl0278.44001MR344810
  12. [12] Grisvard ( P.). — Caratérisation de quelques espaces d'interpolation, Arch. Rational. Mech. Anal., 25 (1967), 40-63. Zbl0187.05901MR213864
  13. [13] Haraux ( A.). - Quelques propriétés des séries lacunaires utiles dans l'étude des systèmes élastiques, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XII (Paris, 1991-1993), 113-124, Pitman Res. Notes Math. Ser., 302, Longman Sci. Tech., Harlow, 1994. Zbl0805.35070MR1291847
  14. [14] Haraux ( A.) and Jaffard ( S.). - Pointwise and spectral control of plate vibrations, Rev. Mat. Iberoamericana, 7 (1997), 1-23. Zbl0778.73045MR1109478
  15. [15] Ingham ( A.E.). - Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-369. Zbl0014.21503JFM62.0225.01
  16. [16] Katznelson ( Y.). — An introduction to harmonic analysis, Dover, New York, 1968. Zbl0169.17902
  17. [17] Lasiecka ( I.) and Triggiani ( R.). — Control theory for partial differential equations : continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon. Encyclopedia of Mathematics and its Applications, 75. Cambridge University Press, Cambridge, 2000. Zbl0961.93003
  18. [18] Lions ( J.L.) et Magenes ( E.). - Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968. Zbl0165.10801
  19. [19] Rebarber ( R.). - Exponential stability of beams with dissipative joints : a frequency domain approach, SIAM. J. Control. Optim., 33 (1995), 1-28. Zbl0819.93042MR1311658
  20. [20] Russell ( D.L.). - Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods, J. Diff. Eq., 19 (1975), 344-370. Zbl0326.93018MR425291
  21. [21] Weiss ( G.). — Transfer functions of regular linear systems, part I: charaterization of regularity, Trans. Amer. Math. Soc.342 (1994), 827-854. Zbl0798.93036MR1179402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.