Stabilisation d'un modèle d'interaction fluide-structure
Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)
- Volume: 10, Issue: 2, page 225-254
- ISSN: 0240-2963
Access Full Article
topHow to cite
topAmmari, Kais. "Stabilisation d'un modèle d'interaction fluide-structure." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (2001): 225-254. <http://eudml.org/doc/73544>.
@article{Ammari2001,
author = {Ammari, Kais},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {fre},
number = {2},
pages = {225-254},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Stabilisation d'un modèle d'interaction fluide-structure},
url = {http://eudml.org/doc/73544},
volume = {10},
year = {2001},
}
TY - JOUR
AU - Ammari, Kais
TI - Stabilisation d'un modèle d'interaction fluide-structure
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 225
EP - 254
LA - fre
UR - http://eudml.org/doc/73544
ER -
References
top- [1] Allibert ( B.) and Micu ( S.) . - Controllability of analytic functioncs for a wave equation coupled with a beam, Rev. Mat. Iberoamericana., 15 (1999), 547-592. Zbl0946.35045MR1742216
- [2] Ammari ( K.). — Stabilisation d'une classe d'équations d'évolution du deuxième ordre en temps, Thèse de doctorat de l'École Polytechnique, 2000.
- [3] Ammari ( K.) and Tucsnak ( M.). — Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM Control Optim. Calc. Var, à paraître. Zbl0992.93039MR1836048
- [4] Ammari ( K.) and Tucsnak ( M.). — Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, SIAM J. Control. Optim., 39 (2000), 1160-1181. Zbl0983.35021MR1814271
- [5] Avalos ( G.), Lasiecka ( I.) and Rebarber ( R.). — Lack of time-delay robustness for stabilization of a structural acoustics model, SIAM. J. Control. Optim., 37 (2000), 1394-1418. Zbl0947.93020MR1710226
- [6] Avalos ( G.) and Lasiecka ( I.). - A differential Riccati equation for the active control of a problem in structural acoustics, J. Optim. Theory Appl.91 (1996), 695-728. Zbl0869.93023MR1419861
- [7] Banks ( H.T.), Fang ( W.), Silox ( R.J.) and Smith ( R.C.). - Approximation methods for control of acoustic/structure models with piezoceramic actuators, Journal of intelligent Material systems and Structures., 4 (1993), 98-116.
- [8] Bardos ( C.), Lebeau ( G.) and Rauch ( J.). — Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. Zbl0786.93009MR1178650
- [9] Bensoussan ( A.), Da Prato ( G.), Delfour ( M.) and Mitter ( S.). Representation and Control of Infinite Dimensional Systems, vol. 1, Birkhäuser, Boston, 1992. Zbl0781.93002MR1182557
- [10] Dafermos ( C.). - Asymptotic behavior of solutions of evolution equations in "Nonlinear evolution equations" (M.G. Crandall, Ed.), 103-123, Academic Press, New York, 1978. Zbl0499.35015MR513814
- [11] Doetsch ( G.). - Introduction to the theory and application of the Laplace transformation, Springer, Berlin, 1974. Zbl0278.44001MR344810
- [12] Grisvard ( P.). — Caratérisation de quelques espaces d'interpolation, Arch. Rational. Mech. Anal., 25 (1967), 40-63. Zbl0187.05901MR213864
- [13] Haraux ( A.). - Quelques propriétés des séries lacunaires utiles dans l'étude des systèmes élastiques, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XII (Paris, 1991-1993), 113-124, Pitman Res. Notes Math. Ser., 302, Longman Sci. Tech., Harlow, 1994. Zbl0805.35070MR1291847
- [14] Haraux ( A.) and Jaffard ( S.). - Pointwise and spectral control of plate vibrations, Rev. Mat. Iberoamericana, 7 (1997), 1-23. Zbl0778.73045MR1109478
- [15] Ingham ( A.E.). - Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-369. Zbl0014.21503JFM62.0225.01
- [16] Katznelson ( Y.). — An introduction to harmonic analysis, Dover, New York, 1968. Zbl0169.17902
- [17] Lasiecka ( I.) and Triggiani ( R.). — Control theory for partial differential equations : continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon. Encyclopedia of Mathematics and its Applications, 75. Cambridge University Press, Cambridge, 2000. Zbl0961.93003
- [18] Lions ( J.L.) et Magenes ( E.). - Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968. Zbl0165.10801
- [19] Rebarber ( R.). - Exponential stability of beams with dissipative joints : a frequency domain approach, SIAM. J. Control. Optim., 33 (1995), 1-28. Zbl0819.93042MR1311658
- [20] Russell ( D.L.). - Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods, J. Diff. Eq., 19 (1975), 344-370. Zbl0326.93018MR425291
- [21] Weiss ( G.). — Transfer functions of regular linear systems, part I: charaterization of regularity, Trans. Amer. Math. Soc.342 (1994), 827-854. Zbl0798.93036MR1179402
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.