Model selection for (auto-)regression with dependent data

Yannick Baraud; F. Comte; G. Viennet

ESAIM: Probability and Statistics (2010)

  • Volume: 5, page 33-49
  • ISSN: 1292-8100

Abstract

top
In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-Gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows' Cp. We state non asymptotic risk bounds for our estimator in some 𝕃 2 -norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form Bα,p,∞(R) with p ≥ 1.

How to cite

top

Baraud, Yannick, Comte, F., and Viennet, G.. "Model selection for (auto-)regression with dependent data." ESAIM: Probability and Statistics 5 (2010): 33-49. <http://eudml.org/doc/116584>.

@article{Baraud2010,
abstract = { In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-Gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows' Cp. We state non asymptotic risk bounds for our estimator in some $\{\mathbb\{L\}\}_2$-norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form Bα,p,∞(R) with p ≥ 1. },
author = {Baraud, Yannick, Comte, F., Viennet, G.},
journal = {ESAIM: Probability and Statistics},
keywords = {Nonparametric regression; least-squares estimator; adaptive estimation; autoregression; mixing processes.},
language = {eng},
month = {3},
pages = {33-49},
publisher = {EDP Sciences},
title = {Model selection for (auto-)regression with dependent data},
url = {http://eudml.org/doc/116584},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Baraud, Yannick
AU - Comte, F.
AU - Viennet, G.
TI - Model selection for (auto-)regression with dependent data
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 33
EP - 49
AB - In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-Gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows' Cp. We state non asymptotic risk bounds for our estimator in some ${\mathbb{L}}_2$-norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form Bα,p,∞(R) with p ≥ 1.
LA - eng
KW - Nonparametric regression; least-squares estimator; adaptive estimation; autoregression; mixing processes.
UR - http://eudml.org/doc/116584
ER -

References

top
  1. H. Akaike, Information theory and an extension of the maximum likelihood principle, in Proc. 2nd International Symposium on Information Theory, edited by P.N. Petrov and F. Csaki. Akademia Kiado, Budapest (1973) 267-281.  
  2. H. Akaike, A new look at the statistical model identification. IEEE Trans. Automat. Control19 (1984) 716-723.  
  3. P. Ango Nze, Geometric and subgeometric rates for markovian processes in the neighbourhood of linearity. C. R. Acad. Sci. Paris326 (1998) 371-376.  
  4. Y. Baraud, Model selection for regression on a fixed design. Probab. Theory Related Fields117 (2000) 467-493.  
  5. Y. Baraud, Model selection for regression on a random design, Preprint 01-10. DMA, École Normale Supérieure (2001).  
  6. Y. Baraud, F. Comte and G. Viennet, Adaptive estimation in autoregression or β-mixing regression via model selection. Ann. Statist. (to appear).  
  7. A. Barron, L. Birgé and P. Massart, Risks bounds for model selection via penalization. Probab. Theory Related Fields113 (1999) 301-413.  
  8. L. Birgé and P. Massart, An adaptive compression algorithm in Besov spaces. Constr. Approx.16 (2000) 1-36.  
  9. L. Birgé and Y. Rozenholc, How many bins must be put in a regular histogram. Working paper (2001).  
  10. A. Cohen, I. Daubechies and P. Vial, Wavelet and fast wavelet transform on an interval. Appl. Comput. Harmon. Anal.1 (1993) 54-81.  
  11. I. Daubechies, Ten lectures on wavelets. SIAM: Philadelphia (1992).  
  12. R.A. Devore and C.G. Lorentz, Constructive Approximation. Springer-Verlag (1993).  
  13. D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Statist.26 (1998) 879-921.  
  14. P. Doukhan, Mixing properties and examples. Springer-Verlag (1994).  
  15. M. Duflo, Random Iterative Models. Springer, Berlin, New-York (1997).  
  16. M. Hoffmann, On nonparametric estimation in nonlinear AR(1)-models. Statist. Probab. Lett.44 (1999) 29-45.  
  17. I.A. Ibragimov, On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition I: Necessary conditions. Theory Probab. Appl.10 (1965) 85-106.  
  18. M. Kohler, On optimal rates of convergence for nonparametric regression with random design, Working Paper. Stuttgart University (1997).  
  19. A.R. Kolmogorov and Y.A. Rozanov, On the strong mixing conditions for stationary Gaussian sequences. Theory Probab. Appl.5 (1960) 204-207.  
  20. K.C. Li, Asymptotic optimality for Cp, Cl cross-validation and generalized cross-validation: Discrete index set. Ann. Statist.15 (1987) 958-975.  
  21. G.G. Lorentz, M. von Golitschek and Y. Makokov, Constructive Approximation, Advanced Problems. Springer, Berlin (1996).  
  22. C.L. Mallows, Some comments on Cp. Technometrics15 (1973) 661-675.  
  23. A. Meyer, Quelques inégalités sur les martingales d'après Dubins et Freedman, Séminaire de Probabilités de l'Université de Strasbourg. Vols. 68/69 (1969) 162-169.  
  24. D.S. Modha and E. Masry, Minimum complexity regression estimation with weakly dependent observations. IEEE Trans. Inform. Theory42 (1996) 2133-2145.  
  25. D.S. Modha and E. Masry, Memory-universal prediction of stationary random processes. IEEE Trans. Inform. Theory44 (1998) 117-133.  
  26. M. Neumann and J.-P. Kreiss, Regression-type inference in nonparametric autoregression. Ann. Statist.26 (1998) 1570-1613.  
  27. B.T. Polyak and A. Tsybakov, A family of asymptotically optimal methods for choosing the order of a projective regression estimate. Theory Probab. Appl.37 (1992) 471-481.  
  28. R. Shibata, Selection of the order of an autoregressive model by Akaike's information criterion. Biometrika63 (1976) 117-126.  
  29. R. Shibata, An optimal selection of regression variables. Biometrika68 (1981) 45-54.  
  30. S. Van de Geer, Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Ann. Statist.23 (1995) 1779-1801.  
  31. V.A. Volonskii and Y.A. Rozanov, Some limit theorems for random functions. I. Theory Probab. Appl.4 (1959) 179-197.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.