On integration in Banach spaces, II

Ivan Dobrakov

Czechoslovak Mathematical Journal (1970)

  • Volume: 20, Issue: 4, page 680-695
  • ISSN: 0011-4642

How to cite

top

Dobrakov, Ivan. "On integration in Banach spaces, II." Czechoslovak Mathematical Journal 20.4 (1970): 680-695. <http://eudml.org/doc/12558>.

@article{Dobrakov1970,
author = {Dobrakov, Ivan},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {4},
pages = {680-695},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On integration in Banach spaces, II},
url = {http://eudml.org/doc/12558},
volume = {20},
year = {1970},
}

TY - JOUR
AU - Dobrakov, Ivan
TI - On integration in Banach spaces, II
JO - Czechoslovak Mathematical Journal
PY - 1970
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 20
IS - 4
SP - 680
EP - 695
LA - eng
UR - http://eudml.org/doc/12558
ER -

References

top
  1. Bartle R. G., 10.4064/sm-15-3-337-352, Studia Math. 15 (1956), 337-352. (1956) Zbl0070.28102MR0080721DOI10.4064/sm-15-3-337-352
  2. Bessaga C., Pelczyňski A., 10.4064/sm-17-2-151-164, Studia Math. 17(1958), 151-164. (1958) MR0115069DOI10.4064/sm-17-2-151-164
  3. Dinculeanu N., Vector measures, VEB Deutscher Verlag der Wissenschaften, Berlin 1966. (1966) Zbl0142.10502MR0206189
  4. Dobrakov I., On integration in Banach spaces, I, Czech. Math. J. 20 (1970), 511 - 536. (1970) Zbl0215.20103MR0365138
  5. Dobrakov I., On representation of linear operators on С 0 ( T , X ) , Czech. Math. J. (To appear.) 
  6. Dunford N., Schwartz J. T., Linear operators, part I, Interscience, New York 1958. (1958) 
  7. Gould G. G., Integration over vector-valued measures, Proc. London Math. Soc. (3) 15 (1965), 193-225. (1965) Zbl0138.38403MR0174694
  8. Hackenbroch W., 10.1007/BF01110295, Math. Zeitschr. 105 (1968), 327-344. (1968) MR0249568DOI10.1007/BF01110295
  9. Halmos P. R., Measure theory, D. Van Nostrand, New York 1950. (1950) Zbl0040.16802MR0033869
  10. Kluvánek I., Some generalizations of the Riesz-Kakutani theorem, (Russian), Czech. Math. J. 13 (88) (1963), 89-113. (1963) MR0151574
  11. Musielak J., Orlicz W., Notes on the theory of integral I, Bull. Acad. Polonaise Scien. 15 (1967), 329-337. (1967) Zbl0154.15504MR0220893
  12. Musielak J., Orlicz W., Notes on the theory of integral II, Bull. Acad. Polonaise Scien, 15 (1967), 723-730. (1967) Zbl0173.16304MR0230868
  13. Musielak J., Orlicz W., Notes on the theory of integral III, Bull. Acad. Polonaise Scien. 16 (1968), 317-326. (1968) Zbl0169.46802MR0231961
  14. Orlicz W., On spaces L * ϕ based on the notion of finitely additive integral, Prace Mat. 12 (1968), 99-113. (1968) MR0251523
  15. Pietsch A., Nukleare lokalkonvexe Räume, Akademie-Verlag, Berlin 1965. (1965) Zbl0152.32302MR0181888
  16. Zaanen A. C., Linear analysis, P. Noordhoff, Groningen, and Interscience Publ., New York 1953. (1953) Zbl0053.25601MR0061752

Citations in EuDML Documents

top
  1. Ján Haluška, On the continuity of the semivariation in locally convex spaces
  2. Charles W. Swartz, Integrating bounded functions for the Dobrakov integral
  3. Alejandro Balbás de la Corte, Pedro Jiménez Guerra, Representation of operators by bilinear integrals
  4. Jae Myung Park, Bounded convergence theorem and integral operator for operator valued measures
  5. Charles W. Swartz, Barrelledness of the space of Dobrakov integrable functions
  6. Ivan Dobrakov, Jana Dobrakovová, Daniell type extensions of L 1 -gauges and integrals
  7. Ivan Dobrakov, On integration in Banach spaces, IV
  8. Charles W. Swartz, Weak Fubini theorems for the Dobrakov integral
  9. Charles W. Swartz, Integrability for the Dobrakov integral
  10. Ivan Dobrakov, On integration in Banach spaces, V

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.