Daniell type extensions of L 1 -gauges and integrals

Ivan Dobrakov; Jana Dobrakovová

Mathematica Slovaca (1997)

  • Volume: 47, Issue: 3, page 267-281
  • ISSN: 0139-9918

How to cite

top

Dobrakov, Ivan, and Dobrakovová, Jana. "Daniell type extensions of $L_1$-gauges and integrals." Mathematica Slovaca 47.3 (1997): 267-281. <http://eudml.org/doc/32320>.

@article{Dobrakov1997,
author = {Dobrakov, Ivan, Dobrakovová, Jana},
journal = {Mathematica Slovaca},
keywords = {vector lattice; subadditive continuity; elementary -gauge; Fatou property; Daniell property},
language = {eng},
number = {3},
pages = {267-281},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Daniell type extensions of $L_1$-gauges and integrals},
url = {http://eudml.org/doc/32320},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Dobrakov, Ivan
AU - Dobrakovová, Jana
TI - Daniell type extensions of $L_1$-gauges and integrals
JO - Mathematica Slovaca
PY - 1997
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 47
IS - 3
SP - 267
EP - 281
LA - eng
KW - vector lattice; subadditive continuity; elementary -gauge; Fatou property; Daniell property
UR - http://eudml.org/doc/32320
ER -

References

top
  1. BATT J., A survey of some recent results on compact mappings, In: Vector and Operator Valued Measures and Applications (D. H. Tucker, H. B. Maynard, eds.), Academic Press, Inc., New York-London, 1973, pp. 23-32. (1973) Zbl0291.28010MR0402502
  2. BATT J., Nonlinear integral operators on C(S,E), Studia Math. 48 (1973), 145-177. (1973) Zbl0242.47040MR0336335
  3. BICHTELER K., Integration Theory (with Special Attention to Vector Measures), Lecture Notes in Math. 315, Springer-Verlag, Berlin-Heidelberg-New York, 1973. (1973) MR0499066
  4. BICHTELER K., Measures with values in non locally convex spaces, In: Measure Theory (Proc. Conf. Oberwolfach, 1975). Lecture Notes in Math. 541, Springer-Verlag, Berlin-New York, 1976, pp. 277-285. (1975) MR0507493
  5. BICHTELER K., Stochastic integration and Lp-theory of semimartingales, Ann. Probab. 9 (1981), 49-89. (1981) MR0606798
  6. BROOKS J. K.-DINCULEANU N., Lebesgue-type spaces for vector integration, linear operators, veak completenes and veak compactness, J. Math. Anal. Appl. 54 (1976), 348-389. (1976) MR0420266
  7. DOBRAKOV I., On integartion in Banach spaces I; II, Czechoslovak Math. J. 20 (95) (1970), 511-536; 680-695. (1970) MR0365138
  8. DOBRAKOV I., On integartion in Banach spaces XVI, Czechoslovak Math. J. (To appear). MR1032359
  9. DOBRAKOV I., On submeasures I, Dissertationes Math. (Rozprawy Mat.) 112 (1974), 1-35. (1974) Zbl0292.28001MR0367140
  10. DOBRAKOV I.-FARKOVA J., On submeasures II, Math. Slovaca 30 (1980), 65-81. (1980) Zbl0428.28001MR0568216
  11. DOBRAKOV I., On extension of submeasures, Math. Slovaca 34 (1984), 265-271. (1984) Zbl0596.28002MR0756982
  12. DOBRAKOV I., A concept of measurability for the Daniell integral, Math. Slovaca 28 (1978), 361-378. (1978) Zbl0414.28009MR0534815
  13. DOBRAKOV I., On Lebesgue pseudonorm on C0(T), Math. Slovaca 32 (1982), 327-335. (1982) MR0676567
  14. KELLEY J. L., General Topology, D. Van Nostrand, Toronto-New York-London, 1957. (1957) MR0070144
  15. KLUVÁNEK I., Integration Structures, Proc. Centre Math. Analysis Australian National Univ., Vol. 18, Canberra, 1988. (1988) Zbl0704.46002MR0994179
  16. ROLEWICZ S., Metric Linear Spaces, Monografie Mat., Vol. 56, PWN, Warszawa, 1972. (1972) Zbl0244.46011MR0438074
  17. SZCZYPINSKI, T, Non-linear operator valued measures and integration, Comment. Math. Prace Mat. 27 (1988), 313-333. (1988) MR0978283
  18. TAYLOR A. E., General Theory of Functions and Integration, Blaisdell Pub. Co., New York-Toronto-London, 1965. (1965) Zbl0135.11301MR0178100
  19. VULICH B. Z., Introduction to the Theory of Semiordered Spaces, [Vvedenie v teoriyu poluuporyadochennykh prostranstv], Fizmatgiz, Moskva, 1961. (1961) 
  20. WILHELM M., Integration of functions with values in a normed group, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 20 (1972), 911-916. (1972) Zbl0245.28007MR0315088
  21. WILHELM M., Fubini-type theorems for integrable spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 22 (1972), 257-261. (1972) MR0344407
  22. WILHELM M., Real integrable spaces, Colloq. Math. 32 (1974-5), 233-248. (1974) MR0385057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.