Best approximations and porous sets
Simeon Reich; Alexander J. Zaslavski
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 4, page 681-689
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, Amer. Math. Soc. Providence, RI (2000). (2000) Zbl0946.46002MR1727673
- De Blasi F.S., Georgiev P.G., Myjak J., On porous sets and best approximation theory, preprint. Zbl1088.41015
- De Blasi F.S., Myjak J., On the minimum distance theorem to a closed convex set in a Banach space, Bull. Acad. Polon. Sci. 29 373-376 (1981). (1981) Zbl0515.41031MR0640331
- De Blasi F.S., Myjak J., On almost well posed problems in the theory of best approximation, Bull. Math. Soc. Sci. Math. R.S. Roum. 28 109-117 (1984). (1984) Zbl0593.41026MR0771542
- De Blasi F.S., Myjak J., Papini P.L., Porous sets in best approximation theory, J. London Math. Soc. 44 135-142 (1991). (1991) Zbl0786.41027MR1122975
- Furi M., Vignoli A., About well-posed minimization problems for functionals in metric spaces, J. Optim. Theory Appl. 5 225-229 (1970). (1970)
- Matoušková E., How small are the sets where the metric projection fails to be continuous, Acta Univ. Carolin. Math. Phys. 33 99-108 (1992). (1992) MR1287230
- Reich S., Zaslavski A.J., Asymptotic behavior of dynamical systems with a convex Lyapunov function, J. Nonlinear Convex Anal. 1 107-113 (2000). (2000) Zbl0984.37016MR1751731
- Reich S., Zaslavski A.J., Well-posedness and porosity in best approximation problems, Topol. Methods Nonlinear Anal. 18 395-408 (2001). (2001) Zbl1005.41011MR1911709
- Reich S., Zaslavski A.J., A porosity result in best approximation theory, J. Nonlinear Convex Anal. 4 165-173 (2003). (2003) Zbl1024.41017MR1986978
- L. Zajíček, On the Fréchet differentiability of distance functions, Suppl. Rend. Circ. Mat. Palermo (2) 5 161-165 (1984). (1984) MR0781948
- Zajíček L., Porosity and -porosity, Real Anal. Exchange 13 314-350 (1987). (1987) MR0943561
- Zajíček L., Small non--porous sets in topologically complete metric spaces, Colloq. Math. 77 293-304 (1998). (1998) MR1628994
- Zaslavski A.J., Well-posedness and porosity in optimal control without convexity assumptions, Calc. Var. 13 265-293 (2001). (2001) Zbl1032.49035MR1864999