Small non-σ-porous sets in topologically complete metric spaces

L. ZajÍček

Colloquium Mathematicae (1998)

  • Volume: 77, Issue: 2, page 293-304
  • ISSN: 0010-1354

How to cite

top

ZajÍček, L.. "Small non-σ-porous sets in topologically complete metric spaces." Colloquium Mathematicae 77.2 (1998): 293-304. <http://eudml.org/doc/210591>.

@article{ZajÍček1998,
author = {ZajÍček, L.},
journal = {Colloquium Mathematicae},
keywords = {non-sigma-porous set; topological complete metric space; nowhere dense set; Borel measure},
language = {eng},
number = {2},
pages = {293-304},
title = {Small non-σ-porous sets in topologically complete metric spaces},
url = {http://eudml.org/doc/210591},
volume = {77},
year = {1998},
}

TY - JOUR
AU - ZajÍček, L.
TI - Small non-σ-porous sets in topologically complete metric spaces
JO - Colloquium Mathematicae
PY - 1998
VL - 77
IS - 2
SP - 293
EP - 304
LA - eng
KW - non-sigma-porous set; topological complete metric space; nowhere dense set; Borel measure
UR - http://eudml.org/doc/210591
ER -

References

top
  1. [1] E. P. Dolzhenko, Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14 (in Russian). 
  2. [2] L. Zajíček, Sets of σ-porosity and sets of σ-porosity (q), Časopis Pěst. Mat. 101 (1976), 350-359. Zbl0341.30026
  3. [3] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314-350. Zbl0666.26003
  4. [4] L. Zajíček, Porosity, derived numbers and knot points of typical continuous functions, Cze- choslovak Math. J. 39 (1989), 45-52. 
  5. [5] L. Zajíček, A note on σ-porous sets, Real Anal. Exchange 17 (1991-92), 18. 
  6. [6] L. Zajíček, Products of non-σ-porous sets and Foran systems, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 497-505. Zbl0877.54023
  7. [7] T. Zamfirescu, Porosity in convexity, Real Anal. Exchange 15 (1989-90), 424-436. Zbl0708.52001

NotesEmbed ?

top

You must be logged in to post comments.