Cardinal characteristics of the ideal of Haar null sets

Taras O. Banakh

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 1, page 119-137
  • ISSN: 0010-2628

Abstract

top
We calculate the cardinal characteristics of the σ -ideal 𝒩 ( G ) of Haar null subsets of a Polish non-locally compact group G with invariant metric and show that cov ( 𝒩 ( G ) ) 𝔟 max { 𝔡 , non ( 𝒩 ) } non ( 𝒩 ( G ) ) cof ( 𝒩 ( G ) ) > min { 𝔡 , non ( 𝒩 ) } . If G = n 0 G n is the product of abelian locally compact groups G n , then add ( 𝒩 ( G ) ) = add ( 𝒩 ) , cov ( 𝒩 ( G ) ) = min { 𝔟 , cov ( 𝒩 ) } , non ( 𝒩 ( G ) ) = max { 𝔡 , non ( 𝒩 ) } and cof ( 𝒩 ( G ) ) cof ( 𝒩 ) , where 𝒩 is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that cof ( 𝒩 ( G ) ) > 2 0 and hence G contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of G . This gives a negative (consistent) answer to a question of S. Solecki. To obtain these estimates we show that for a Polish non-locally compact group G with invariant metric the ideal 𝒩 ( G ) contains all o -bounded subsets (equivalently, subsets with the small ball property) of G .

How to cite

top

Banakh, Taras O.. "Cardinal characteristics of the ideal of Haar null sets." Commentationes Mathematicae Universitatis Carolinae 45.1 (2004): 119-137. <http://eudml.org/doc/249366>.

@article{Banakh2004,
abstract = {We calculate the cardinal characteristics of the $\sigma $-ideal $\mathcal \{H\}\mathcal \{N\}(G)$ of Haar null subsets of a Polish non-locally compact group $G$ with invariant metric and show that $\operatorname\{cov\}(\mathcal \{H\}\mathcal \{N\}(G)) \le \mathfrak \{b\}\le \max \lbrace \mathfrak \{d\},\operatorname\{non\}(\mathcal \{N\})\rbrace \le \operatorname\{non\}(\mathcal \{H\}\mathcal \{N\}(G))\le \operatorname\{cof\}(\mathcal \{H\}\mathcal \{N\}(G)) \hspace\{-0.86pt\}> \hspace\{-0.86pt\}\min \lbrace \mathfrak \{d\},\operatorname\{non\}(\mathcal \{N\})\rbrace $. If $G=\prod _\{n\ge 0\}G_n$ is the product of abelian locally compact groups $G_n$, then $\operatorname\{add\}(\mathcal \{H\}\mathcal \{N\}(G)) = \operatorname\{add\}(\mathcal \{N\})$, $\operatorname\{cov\}(\mathcal \{H\}\mathcal \{N\}(G))=\min \lbrace \mathfrak \{b\}, \operatorname\{cov\}(\mathcal \{N\})\rbrace $, $\operatorname\{non\}(\mathcal \{H\}\mathcal \{N\}(G))= \max \lbrace \mathfrak \{d\},\operatorname\{non\}(\mathcal \{N\})\rbrace $ and $\operatorname\{cof\}(\mathcal \{H\}\mathcal \{N\}(G))\ge \operatorname\{cof\}(\mathcal \{N\})$, where $\mathcal \{N\}$ is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that $\operatorname\{cof\}(\mathcal \{H\}\mathcal \{N\}(G))>2^\{\aleph _0\}$ and hence $G$ contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of $G$. This gives a negative (consistent) answer to a question of S. Solecki. To obtain these estimates we show that for a Polish non-locally compact group $G$ with invariant metric the ideal $\mathcal \{H\}\mathcal \{N\}(G)$ contains all $o$-bounded subsets (equivalently, subsets with the small ball property) of $G$.},
author = {Banakh, Taras O.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Polish group; Haar null set; Martin Axion; cardinal characteristics of an ideal; $o$-bounded set; the small ball property; Polish group; Haar null set; cardinal characteristics of an ideal},
language = {eng},
number = {1},
pages = {119-137},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Cardinal characteristics of the ideal of Haar null sets},
url = {http://eudml.org/doc/249366},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Banakh, Taras O.
TI - Cardinal characteristics of the ideal of Haar null sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 1
SP - 119
EP - 137
AB - We calculate the cardinal characteristics of the $\sigma $-ideal $\mathcal {H}\mathcal {N}(G)$ of Haar null subsets of a Polish non-locally compact group $G$ with invariant metric and show that $\operatorname{cov}(\mathcal {H}\mathcal {N}(G)) \le \mathfrak {b}\le \max \lbrace \mathfrak {d},\operatorname{non}(\mathcal {N})\rbrace \le \operatorname{non}(\mathcal {H}\mathcal {N}(G))\le \operatorname{cof}(\mathcal {H}\mathcal {N}(G)) \hspace{-0.86pt}> \hspace{-0.86pt}\min \lbrace \mathfrak {d},\operatorname{non}(\mathcal {N})\rbrace $. If $G=\prod _{n\ge 0}G_n$ is the product of abelian locally compact groups $G_n$, then $\operatorname{add}(\mathcal {H}\mathcal {N}(G)) = \operatorname{add}(\mathcal {N})$, $\operatorname{cov}(\mathcal {H}\mathcal {N}(G))=\min \lbrace \mathfrak {b}, \operatorname{cov}(\mathcal {N})\rbrace $, $\operatorname{non}(\mathcal {H}\mathcal {N}(G))= \max \lbrace \mathfrak {d},\operatorname{non}(\mathcal {N})\rbrace $ and $\operatorname{cof}(\mathcal {H}\mathcal {N}(G))\ge \operatorname{cof}(\mathcal {N})$, where $\mathcal {N}$ is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that $\operatorname{cof}(\mathcal {H}\mathcal {N}(G))>2^{\aleph _0}$ and hence $G$ contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of $G$. This gives a negative (consistent) answer to a question of S. Solecki. To obtain these estimates we show that for a Polish non-locally compact group $G$ with invariant metric the ideal $\mathcal {H}\mathcal {N}(G)$ contains all $o$-bounded subsets (equivalently, subsets with the small ball property) of $G$.
LA - eng
KW - Polish group; Haar null set; Martin Axion; cardinal characteristics of an ideal; $o$-bounded set; the small ball property; Polish group; Haar null set; cardinal characteristics of an ideal
UR - http://eudml.org/doc/249366
ER -

References

top
  1. Banakh T., Locally minimal groups and their embeddings into products of o -bounded groups, Comment. Math. Univ. Carolinae 41.4 (2000), 811-815. (2000) MR1800163
  2. Banakh T., On index of total boundedness of (strictly) o -bounded groups, Topology Appl. 120 (2002), 427-439. (2002) Zbl1010.22004MR1897272
  3. Banakh T., Nickolas P., Sanchis M., Filter games and pathologic subgroups of the countable product of lines, J. Austral. Math. Soc., to appear. MR2300160
  4. Banakh T.O., Protasov I.V., Ball structures and colorings of graphs and groups, VNTL, Lviv, 2003. Zbl1147.05033MR2392704
  5. Bartoszyński T., Judah H., Shelah S., The Cichoń diagram, J. Symb. Log. 58.2 (1993), 401-423. (1993) MR1233917
  6. Behrends E., Kadets V., On the small ball property, Studia Math. 148 (2001), 275-287. (2001) MR1880727
  7. Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, I, Amer. Math. Soc., 2000. MR1727673
  8. Christensen J.P.R., On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255-260. (1972) MR0326293
  9. Dougherty R., Examples of nonshy sets, Fund. Math. 144 (1994), 73-88. (1994) MR1271479
  10. van Douwen E.K., The integers and topology, in Handbook of Set-Theoretic Topology , K. Kunen, J.E. Vaughan (Eds.), North-Holland, Amsterdam, 1984, pp.111-167. Zbl0561.54004MR0776619
  11. Hernández C., Topological groups close to being σ -compact, Topology Appl. 102 (2000), 101-111. (2000) MR1739266
  12. Hernández C., Robbie D., Tkachenko M., Some properties of o -bounded and strictly o -bounded groups, Appl. General Topology 1 (2000), 29-43. (2000) MR1796930
  13. Heyer H., Probability Measures on Locally Compact Groups, Springer, 1977. Zbl0528.60010MR0501241
  14. Kechris A., Classical Descriptive Set Theory, Springer, 1995. Zbl0819.04002MR1321597
  15. Laver R., On the consistency of the Borel's conjecture, Acta Math. 137 (1976), 151-169. (1976) MR0422027
  16. Paterson A., Amenability, Math. Surveys and Monographs, vol. 29, Amer. Math. Soc., 1988. Zbl1106.22008MR0961261
  17. Plichko A., Zagorodnyuk A., Isotropic mappings and automatic continuity of polynomial, analytic, and convex operators, in General Topology in Banach Spaces (T. Banakh, Ed.), Nova Sci. Publ., NY, 2001, pp.1-13. MR1901530
  18. Pontryagin L.S., Continuous Groups, Nauka, Moscow, 1984. Zbl0659.22001MR0767087
  19. Solecki S., Haar null sets, Fund. Math. 149 (1996), 205-210. (1996) Zbl0887.28006MR1383206
  20. Solecki S., Haar null and non-dominating sets, Fund. Math. 170 (2001), 197-217. (2001) Zbl0994.28006MR1881376
  21. Tkachenko M., Introduction to topological groups, Topology Appl. 86 (1998), 179-231. (1998) Zbl0955.54013MR1623960
  22. Tkachenko M., Topological groups: between compactness and 0 -boundedness, in Recent Progress in General Topology, (M. Hušek and J. van Mill, Eds.), North-Holland, 2002. Zbl1029.54045MR1970010
  23. Tsaban B., o -Bounded groups and other topological groups with strong combinatorial properties, submitted, http://arxiv.org/abs/math.GN/0307225. Zbl1090.54034MR2180906
  24. Topsøe F., Hoffmann-Jørgensen J., Analytic Spaces and their Applications, in Analytic Sets, C. Rogers et al., Academic Press, London, 1980. 
  25. Vaughan J.E., Small uncountable cardinals and topology, in Open Problems in Topology, J. van Mill, G.M. Reed (Eds.), Elsevier Sci. Publ., 1990, pp.197-216. MR1078647
  26. Zakrzewski P., Measures on algebraic-topological structures, in Handbook on Measure Theory, E. Pap (Ed.), North Holland, 2002. Zbl1040.28016MR1954637

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.