Epi-archimedean groups

Paul F. Conrad

Czechoslovak Mathematical Journal (1974)

  • Volume: 24, Issue: 2, page 192-218
  • ISSN: 0011-4642

How to cite

top

Conrad, Paul F.. "Epi-archimedean groups." Czechoslovak Mathematical Journal 24.2 (1974): 192-218. <http://eudml.org/doc/12783>.

@article{Conrad1974,
author = {Conrad, Paul F.},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {2},
pages = {192-218},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Epi-archimedean groups},
url = {http://eudml.org/doc/12783},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Conrad, Paul F.
TI - Epi-archimedean groups
JO - Czechoslovak Mathematical Journal
PY - 1974
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 24
IS - 2
SP - 192
EP - 218
LA - eng
UR - http://eudml.org/doc/12783
ER -

References

top
  1. I. Amemiya, A general spectral theory in semi-ordered linear spaces, J. Fac. Sci. Hokkaido Uni. 12 (1953) 111-156. (1953) Zbl0053.25802MR0056853
  2. K. A. Baker, Topological methods in the algebraic theory of vector lattices, Thesis, Harvard University 1966. (1966) 
  3. S. J. Bernau, 10.1016/1385-7258(74)90011-0, Proc. Kon. Ned. Akad. V. Wetensch. 77 (1974) 40-43. (1974) MR0341017DOI10.1016/1385-7258(74)90011-0
  4. S. J. Bernau, Unique representations of Archimedean lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. 75 (1965) 599-631. (1965) MR0182661
  5. A. Bigard, Groupes archimediens et hyper-archimediens, Séminaire Dubreil - Pisot 21 e (1967-68) no. 2. (1967) 
  6. A. Bigard, Contribution a la théorie des groupes reticules, These University Paris, 1969. (1969) 
  7. A. Bigard P. Conrad S. Wolfenstein, 10.1007/BF01110258, Math. Zeitschr., 107 (1968), 201-211. (1968) MR0236083DOI10.1007/BF01110258
  8. R. Bieter, Minimal vector lattice covers, Bull. Australian Math. Soc. 5 (1971), 411 - 413. (1971) MR0295989
  9. R. Byrd P. Conrad, T. Lloyd, 10.1090/S0002-9947-1971-0279014-7, Trans. Amer. Math. Soc. 158 (1971) 339-371. (1971) MR0279014DOI10.1090/S0002-9947-1971-0279014-7
  10. P. Conrad D. McAlister, 10.1017/S1446788700005760, J. Australian Math. Soc. 9 (1969), 182-208. (1969) MR0249340DOI10.1017/S1446788700005760
  11. P. Conrad, Lattice-ordered groups, Lecture notes, Tulane University (1970). (1970) Zbl0258.06011
  12. P. Conrad, J. Diem, 10.1215/ijm/1256052710, Illinois J. Mth. 15 (1971) 222-240. (1971) Zbl0213.04002MR0285462DOI10.1215/ijm/1256052710
  13. P. Conrad, The essential closure of an archimedean lattice-ordered group, Duke Math. J. 38 (1971) 151-160. (1971) Zbl0216.03104MR0277457
  14. P. Conrad, 10.1017/S1446788700015391, J. Australian Math. Soc. 16 (1973) 385-415. (1973) Zbl0275.06025MR0344173DOI10.1017/S1446788700015391
  15. P. Conrad, 10.1017/S0004972700046232, Bull. Australian Math. Soc. 4 (1971) 35-39. (1971) Zbl0199.34703MR0272692DOI10.1017/S0004972700046232
  16. P. Hill, Bounded sequences of integers, (preprint). 
  17. W. Luxemburg, L. Moore, 10.1215/S0012-7094-67-03475-8, Duke Math. J. 34 (1967) 725-740. (1967) MR0217562DOI10.1215/S0012-7094-67-03475-8
  18. L. Moore, 10.1016/S1385-7258(70)80018-X, Indag. Math. 32 (1970) 141-150. (1970) MR0258707DOI10.1016/S1385-7258(70)80018-X
  19. F. Pedersen, Contributions to the theory of regular subgroups and prime subgroups of lattice-ordered groups, Dissertation Tulane University (1967). (1967) MR2616630
  20. J. Martinez, 10.1090/S0002-9947-1973-0332614-X, Trans. Math. Joe. 186 (1973) 33-49. (1973) MR0332614DOI10.1090/S0002-9947-1973-0332614-X
  21. C. Nöbeling, 10.1007/BF01389832, Inventiones Math. 6 (1968) 41-55. (1968) MR0231907DOI10.1007/BF01389832
  22. S. Wolfenstein, Contribution a l'étude des groupes reticules, These University Paris 1970. (1970) 
  23. A. Zannen, M R 651, Math. Reviews 36 (1968), 142-143. (1968) 

Citations in EuDML Documents

top
  1. Jorge Martinez, Dimension in algebraic frames
  2. Paul F. Conrad, Philip Montgomery, Lattice-ordered groups with rank one components
  3. Jorge Martinez, Torsion theory for lattice-ordered groups
  4. Jorge Martinez, Pairwise splitting lattice-ordered groups
  5. A. W. Hager, D. G. Johnson, Some comments and examples on generation of (hyper-)archimedean -groups and f -rings
  6. David Kenoyer, Recognizability in the lattice of convex -subgroups of a lattice-ordered group
  7. Jorge Martinez, Torsion theory for lattice-ordered groups Part II: Homogeneous l -groups
  8. Paul F. Conrad, Michael R. Darnel, Subgroups and hulls of Specker lattice-ordered groups
  9. Michael R. Darnel, Closure operators on radical classes of lattice-ordered groups
  10. Ján Jakubík, Strong projectability of lattice ordered groups

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.