Some comments and examples on generation of (hyper-)archimedean -groups and -rings
A. W. Hager[1]; D. G. Johnson[2]
- [1] Department of Mathematics Wesleyan University Middletown, CT, USA, 06459
- [2] 5 W. Oak St. Ramsey, NJ 07446
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: S1, page 75-100
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topHager, A. W., and Johnson, D. G.. "Some comments and examples on generation of (hyper-)archimedean $\ell $-groups and $f$-rings." Annales de la faculté des sciences de Toulouse Mathématiques 19.S1 (2010): 75-100. <http://eudml.org/doc/115904>.
@article{Hager2010,
abstract = {This paper systematizes some theory concerning the generation of $\ell $-groups and reduced $f$-rings from substructures. We are particularly concerned with archimedean and hyperarchimedean groups and rings. We discuss the process of adjoining a weak order unit to an $\ell $-group, or an identity to an $f$-ring and find significant contrasts between these cases. In $\ell $-groups, hyperarchimedeanness and similar properties fail to pass from generating structures to the structures that they generate, as illustrated by a basic example of Conrad and Martinez which we revisit and elaborate. For reduced $f$-rings, on the other hand, these properties do inherit upwards.},
affiliation = {Department of Mathematics Wesleyan University Middletown, CT, USA, 06459; 5 W. Oak St. Ramsey, NJ 07446},
author = {Hager, A. W., Johnson, D. G.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {hyperarchimedean -groups; -rings; Archimedean -groups; weak order unit},
language = {eng},
month = {4},
number = {S1},
pages = {75-100},
publisher = {Université Paul Sabatier, Toulouse},
title = {Some comments and examples on generation of (hyper-)archimedean $\ell $-groups and $f$-rings},
url = {http://eudml.org/doc/115904},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Hager, A. W.
AU - Johnson, D. G.
TI - Some comments and examples on generation of (hyper-)archimedean $\ell $-groups and $f$-rings
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - S1
SP - 75
EP - 100
AB - This paper systematizes some theory concerning the generation of $\ell $-groups and reduced $f$-rings from substructures. We are particularly concerned with archimedean and hyperarchimedean groups and rings. We discuss the process of adjoining a weak order unit to an $\ell $-group, or an identity to an $f$-ring and find significant contrasts between these cases. In $\ell $-groups, hyperarchimedeanness and similar properties fail to pass from generating structures to the structures that they generate, as illustrated by a basic example of Conrad and Martinez which we revisit and elaborate. For reduced $f$-rings, on the other hand, these properties do inherit upwards.
LA - eng
KW - hyperarchimedean -groups; -rings; Archimedean -groups; weak order unit
UR - http://eudml.org/doc/115904
ER -
References
top- A. Bigard, K. Keimel, S. Wolfenstain, Groupes et Anneaux Réticulés, Lecture Notes in Mathematics, Vol. 608, Springer, 1977. Zbl0384.06022MR552653
- G. Birkhoff, R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci., 28 (1956) 41-69. Zbl0070.26602MR80099
- P..Conrad, The essential closure of an archimedean lattice-ordered group, Duke Math. J.,38 (1971), 151-160. Zbl0216.03104MR277457
- P. Conrad, Epi-archimedean groups, Czech. Math. J., 24 (99) (1974), 192-218. Zbl0319.06009MR347701
- E. van Douwen, The integers and topology, Handbook of Set-Theoretic Topology (K. Kunen, J. Vaughan, ed.), Elsevier, 1984, 111-167. Zbl0561.54004MR776622
- P. Conrad, J. Martinez, Settling a number of questions about hyper-archimedean lattice-ordered groups, Proc. AMS, 109, no. 2, (1990), 291-296. Zbl0707.06007MR998733
- P. Conrad, J. Martinez, On adjoining units to hyper-archimedean -groups, Czech. Math. J., 45 (120) (1995), 503-516. Zbl0842.06013MR1344517
- L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand Co., 1960; reprinted Springer-Verlag, 1976. Zbl0093.30001MR407579
- M. Henriksen, J. R.Isbell, Lattice-ordered rings and function rings, Pacific Math. J., 12 (1962), 533-565. Zbl0111.04302MR153709
- A. W. Hager, D. G. Johnson, Adjoining an identity to a reduced archimedean -ring, Communications in Algebra, 38 (2007), 1487-1503. Zbl1118.06011MR2317623
- A. W. Hager, D. G. Johnson, Adjoining an identity to a reduced archimedean -ring II: Algebras, Appl. Categor. Struct., 15 (2007), 35-47. Zbl1126.06005MR2306537
- A. W. Hager, C. M. Kimber, Some examples of hyperarchimedean lattice-ordered groups, Fund, Math. 182 (2004), 107-122. Zbl1058.06020MR2100062
- A. W. Hager, C. M. Kimber, W. W. McGovern, Least integer closed groups, in Ordered algebraic structures (J. Martinez, ed.), 2002, 245-260. Zbl1074.06005MR2083043
- A. W. Hager, L. C. Robertson, Representing and ringifying a Riesz space, Symp. Math. 21, Academic Press, 1977, 411-431. Zbl0382.06018MR482728
- M. Henriksen, D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961), 73-94. Zbl0099.10101MR133698
- D. G. Johnson, On a representation theory for a class of archimedean lattice-ordered rings, Proc. London Math. Soc., (3) 12 (1962), 207-226. Zbl0105.26401MR141685
- D. G. Johnson, A representation Theorem revisited, Algebra Universalis, 56, (2007), 303-314. Zbl1118.06012MR2318213
- W. Luxemberg, A. Zaanen, Riesz Spaces I, North Holland, 1971. Zbl0231.46014MR704021
- J. J. Madden, On -rings that are not formally real, this volume. Zbl1213.06013
- E. C. Weinberg, Completely distributive lattice-ordered groups, Pacific Math. J., 12 (1962), 1131-1137. Zbl0111.24301MR147549
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.