Adjoint domains and generalized splines

Richard C. Brown

Czechoslovak Mathematical Journal (1975)

  • Volume: 25, Issue: 1, page 134-147
  • ISSN: 0011-4642

How to cite

top

Brown, Richard C.. "Adjoint domains and generalized splines." Czechoslovak Mathematical Journal 25.1 (1975): 134-147. <http://eudml.org/doc/12845>.

@article{Brown1975,
author = {Brown, Richard C.},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {1},
pages = {134-147},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Adjoint domains and generalized splines},
url = {http://eudml.org/doc/12845},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Brown, Richard C.
TI - Adjoint domains and generalized splines
JO - Czechoslovak Mathematical Journal
PY - 1975
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 25
IS - 1
SP - 134
EP - 147
LA - eng
UR - http://eudml.org/doc/12845
ER -

References

top
  1. J. H. Ahlberg, E. N. Nilson, 10.1137/0703013, SIAM J. Numer. AnaL 3 (1966), 173-182. (1966) MR0217500DOI10.1137/0703013
  2. P. M. Anselone, P. J. Laurent, 10.1007/BF02170998, Numer. Math. 12 (1968), 66-82. (1968) Zbl0197.13501MR0249904DOI10.1007/BF02170998
  3. R. Arens, 10.2140/pjm.1961.11.9, Pacific J. Math. 11 (1961), 9-23. (1961) Zbl0102.10201MR0123188DOI10.2140/pjm.1961.11.9
  4. M. Attela, Généralisation de la définition et des propriétés des „spline fonction", C. R. Acad. Sci., Paris, Sér. A 260 (1965), 3550-3553. (1965) MR0212469
  5. M. Attela, Spline-fonctions généralisées, С R. Acad. Sci., Paris, Sér. A 261 (1965), 2149-2152. (1965) MR0212470
  6. R. C. Brown, The adjoint and Fredholm index of a linear system with general boundary conditions, Technical Summary Report #1287, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1972. (1972) 
  7. R. C. Brown, Duality theory for n t h order differential operators under Stieltjes boundary conditions, Technical Summary Report #1329, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1973. (1973) 
  8. C. de Boor, Best approximation properties of spline functions of odd degree, J. Math. Mech. 12 (1963), 747-749, (1963) Zbl0116.27601MR0154022
  9. C. de Boor, R. E. Lynch, On splines and their minimum properties, J. Math. Mech. 15 (1966), 953-970. (1966) Zbl0185.20501MR0203306
  10. S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. (1966) Zbl0148.12501MR0200692
  11. M. Golomb, H. F. Weinberger, Optimal approximation and error bounds. On Numerical Approximation, R. E. Langer, Editor, University of Wisconsin Press, Madison, 1959, pp. 117-190. (1959) MR0121970
  12. T. N. E. Greville, Interpolation by generalized spline functions, Technical Summary Report #784, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1964. (1964) 
  13. T. N. E. Greville, Data fitting by spline functions, Technical Summary Report #893, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1968. (1968) 
  14. J. W. Jerome, 10.1007/BF02165513, Numer. Math. 15 (1970), 433 - 449. (1970) Zbl0214.41801MR0287068DOI10.1007/BF02165513
  15. J. W. Jerome, L. L. Schumaker, 10.1016/0021-9045(69)90029-X, J. Approximation Theory 2 (1969), 29-49. (1969) Zbl0172.34501MR0241864DOI10.1016/0021-9045(69)90029-X
  16. J. W. Jerome, R. S. Varga, Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems, Theory and Applications of Spline Functions, T. N. E. Greville, Editor, Academic Press, New York, 1969, pp. 103-155. (1969) Zbl0188.13004MR0239328
  17. A. M. Krall, 10.1016/0022-0396(68)90019-3, J. Differential Equations 4 (1968), 327-336. (1968) Zbl0165.42702MR0230968DOI10.1016/0022-0396(68)90019-3
  18. A. M. Krall, 10.2140/pjm.1969.29.161, Pacific J. Math. 29 (1969), 161-166. (1969) Zbl0189.45401MR0245894DOI10.2140/pjm.1969.29.161
  19. T. R. Lucas, 10.1007/BF02165507, Numer. Math. 15 (1970), 359-370. (1970) Zbl0214.41303MR0269080DOI10.1007/BF02165507
  20. T. R. Lucas, 10.1016/0021-9045(72)90026-3, J. Approximation Theory 5 (1972), 1-14. (1972) Zbl0227.41002MR0350265DOI10.1016/0021-9045(72)90026-3
  21. M. A. Naimark, Linear Differential Operators, Part II. Ungar, New York, 1968. (1968) Zbl0227.34020
  22. A. Sard, 10.1016/0022-1236(67)90033-X, J. Functional Analysis 1 (1967), 222-244. (1967) Zbl0158.13601MR0219967DOI10.1016/0022-1236(67)90033-X
  23. I. J. Schoenberg, On interpolation by spline functions and its minimal properties, On Approximation Theory, (Proceedings of the Conference held in the Mathematical Research Institute at Oberwolfach, Black Forest, Aug. 4-10, 1963), P. L. Butzei, ed., Birkhäuser Verlag, Basel, 1964, pp. 109-129. (1963) MR0180785
  24. I. J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech. 13 (1964), 795-825. (1964) Zbl0147.32104MR0165300
  25. I. J. Schoenberg, 10.1016/0022-247X(68)90252-7, J. Math. Anal. Appl. 21 (1968), 207-231. (1968) MR0223802DOI10.1016/0022-247X(68)90252-7
  26. M. H. Schultz, R. S. Varga, 10.1007/BF02162033, Numer. Math. 10 (1967), 345-369. (1967) MR0225068DOI10.1007/BF02162033
  27. F. W. Stallard, Differential systems with interface conditions, Oak Ridge National Laboratory Report, ORNL 1876 (1955). (1955) 
  28. J. L. Wash J. H. Ahlberg, E. N. Nilson, Best approximation properties of the spline fit, J. Math. Mech. 11 (1962), 225-234. (1962) MR0137283
  29. A. Zettl, Adjoint and self-adjoint boundary value problems with interface conditions, Technical Summary Report # 827, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1967. (1967) MR0234049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.