Page 1 Next

Displaying 1 – 20 of 224

Showing per page

A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems

Josef Dalík (1991)

Applications of Mathematics

A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation - ϵ u n + p u ' + q u = f are presented and analyzed theoretically. The positive number ϵ is supposed to be much less than the discretization step and the values of p , q . An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.

A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems

Torsten Linß (2014)

Applications of Mathematics

FEM discretizations of arbitrary order r are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.

A Sturm-Liouville problem with spectral and large parameters in boundary conditions and the associated Cauchy problem

Jamel Ben Amara (2011)

Colloquium Mathematicae

We study a Sturm-Liouville problem containing a spectral parameter in the boundary conditions. We associate to this problem a self-adjoint operator in a Pontryagin space Π₁. Using this operator-theoretic formulation and analytic methods, we study the asymptotic behavior of the eigenvalues under the variation of a large physical parameter in the boundary conditions. The spectral analysis is applied to investigate the well-posedness and stability of the wave equation of a string.

Currently displaying 1 – 20 of 224

Page 1 Next