An upper bound for the minimum degree of a graph
Czechoslovak Mathematical Journal (1977)
- Volume: 27, Issue: 3, page 460-466
- ISSN: 0011-4642
Access Full Article
topHow to cite
topNebeský, Ladislav. "An upper bound for the minimum degree of a graph." Czechoslovak Mathematical Journal 27.3 (1977): 460-466. <http://eudml.org/doc/13016>.
@article{Nebeský1977,
author = {Nebeský, Ladislav},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {3},
pages = {460-466},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An upper bound for the minimum degree of a graph},
url = {http://eudml.org/doc/13016},
volume = {27},
year = {1977},
}
TY - JOUR
AU - Nebeský, Ladislav
TI - An upper bound for the minimum degree of a graph
JO - Czechoslovak Mathematical Journal
PY - 1977
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 3
SP - 460
EP - 466
LA - eng
UR - http://eudml.org/doc/13016
ER -
References
top- M. Behzad, G. Chartrand, Introduction to the Theory of Graphs, Allyn and Bacon, Boston 1971. (1971) Zbl0238.05101MR0432461
- G. Chartrand A. Kaugars, D. R. Lick, Critically -connected graphs, Proc. Amer. Math. Soc. 32 (1972), 63-68. (1972) MR0290999
- R. Halin, 10.1016/S0021-9800(69)80049-9, J. Combinatorial Theory 7 (1969), 150-154. (1969) Zbl0172.25803MR0248042DOI10.1016/S0021-9800(69)80049-9
- R. Halin, On the structure of -connected graphs, Recent Progress in Combinatorics (W. T. Tutte, ed.). Academic Press, New York and London 1969, pp. 91 - 102. (1969) Zbl0193.53203MR0255435
- F. Harary, Graph Theory, Addison-Wesley, Reading 1969. (1969) Zbl0196.27202MR0256911
- W. Mader, 10.1007/BF01222585, Archiv Math. 22 (1971), 333 - 336. (1971) Zbl0214.51503MR0292710DOI10.1007/BF01222585
- L. Nebeský, A theorem on 2-connected graphs, Časopis pěst. mat. 100 (1975), 116-117. (1975) MR0429642
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.