-универсальные квазимогообразия графов.
A graph is 1-planar if it can be drawn in the Euclidean plane so that each edge is crossed by at most one other edge. A 1-planar graph on vertices is optimal if it has edges. We prove that 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable (in the sense that each of the four color classes induces a subgraph of maximum degree one). Inspired by the decomposition of 1-planar graphs, we conjecture that every 1-planar graph is (2,2,2,0,0)-colorable.
For all integers g ≥ 6 we prove the existence of a metric graph G with [...] w41=1 such that G has Clifford index 2 and there is no tropical modification G′ of G such that there exists a finite harmonic morphism of degree 2 from G′ to a metric graph of genus 1. Those examples show that not all dimension theorems on the space classifying special linear systems for curves have immediate translation to the theory of divisors on metric graphs.
The goal of this paper is to unify two lines in a particular area of graph limits. First, we generalize and provide unified treatment of various graph limit concepts by means of a combination of model theory and analysis. Then, as an example, we generalize limits of bounded degree graphs from subgraph testing to finite model testing.