The lattice of equational theories. Part I: Modular elements
Czechoslovak Mathematical Journal (1981)
- Volume: 31, Issue: 1, page 127-152
- ISSN: 0011-4642
Access Full Article
topHow to cite
topJežek, Jaroslav. "The lattice of equational theories. Part I: Modular elements." Czechoslovak Mathematical Journal 31.1 (1981): 127-152. <http://eudml.org/doc/13247>.
@article{Ježek1981,
author = {Ježek, Jaroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {equational classes of algebras; lattice of equational classes; modular elements},
language = {eng},
number = {1},
pages = {127-152},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The lattice of equational theories. Part I: Modular elements},
url = {http://eudml.org/doc/13247},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Ježek, Jaroslav
TI - The lattice of equational theories. Part I: Modular elements
JO - Czechoslovak Mathematical Journal
PY - 1981
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 1
SP - 127
EP - 152
LA - eng
KW - equational classes of algebras; lattice of equational classes; modular elements
UR - http://eudml.org/doc/13247
ER -
References
top- A. D. Bol'bot, О mnogoobrazijach -algebr, Algebra i logika 9/4 (1970), 406-414. (1970) MR0286733
- S. Burris, 10.1007/BF02944953, Algebra Universalis 1 (1971), 39-45. (1971) MR0291050DOI10.1007/BF02944953
- G. Grätzer, Universal algebra, second edition. (To appear.) MR0538623
- E. Jacobs, R. Schwabauer, 10.1080/00029890.1964.11992212, Amer. Math. Monthly 71 (1964), 151-155. (1964) Zbl0117.26003MR0162740DOI10.1080/00029890.1964.11992212
- J. Ježek, 10.4064/cm-20-2-159-179, Colloq. Math. 20 (1969), 159-179. (1969) MR0246813DOI10.4064/cm-20-2-159-179
- J. Ježek, Principal dual ideals in lattices of primitive classes, Comment. Math. Univ. Carolinae 9 (1968), 533-545. (1968) MR0244131
- J. Ježek, On atoms in lattices of primitive classes, Comment. Math. Univ. Carolinae (1970), 515-532. (1970) MR0269571
- J. Ježek, The existence о upper semicomplements in lattices of primitive classes, Comment. Math. Univ. Carolinae 12 (1971), 519-532. (1971) MR0292734
- J. Ježek, Upper semicomplements and a definable element in the lattice of groupoid varieties, Comment. Math. Univ. Carolinae 12 (1971), 565-586. (1971) MR0289398
- J. Ježek, 10.1007/BF02485826, Algebra Universalis 6 (1976), 147-158. (1976) MR0419332DOI10.1007/BF02485826
- J. Kalicki, 10.1016/S1385-7258(55)50090-4, Indag. Math. 17 (1955), 660-662. (1955) Zbl0073.24601MR0074351DOI10.1016/S1385-7258(55)50090-4
- R. McKenzie, 10.1016/0003-4843(71)90007-6, Annals of Math. Logic 3 (1971), 197-237. (1971) Zbl0328.02038MR0280349DOI10.1016/0003-4843(71)90007-6
- G. McNulty, 10.1016/0003-4843(76)90009-7, Annals of Math. Logic 10 (1976), 193-259. (1976) Zbl0376.08005MR0432440DOI10.1016/0003-4843(76)90009-7
- G. McNulty, Undecidable properties of finite sets of equations, J. Symbolic Logic (1977). (1977) MR0485307
- G. McNulty, Structural diversity in the lattice of equational theories, (To appear.) Zbl0799.08011MR0631723
- G. Pollák: O, n the existence of covers in lattices of varieties, 235-247 in: Contributions to general algebra. Proc. of the Klagenfurt Conference, May 25-28, 1978. Verlag Johannes Heyn, Klagenfurt 1979. (1978) MR0537424
- A. Tarski, Equational logic and equational theories of algebras, 275-288 in: H. A. Schmidt, K. Schütte and H. J. Thiele, eds.. Contributions to Mathematical Logic, North-Holland, Amsterdam 1968. (1968) Zbl0209.01402MR0237410
- W. Taylor, Equational logic, Houston J. of Math. (To appear.) Zbl0421.08004MR0546853
- A. N. Trachtman, О pokryvajuščich elementach v strukture mnogoobrazij algebr, Matem. Zametki 15 (1974), 307-312. (1974)
Citations in EuDML Documents
top- Jaroslav Ježek, The lattice of equational theories. Part II: The lattice of full sets of terms
- Boris M. Vernikov, On modular elements of the lattice of semigroup varieties
- Jaroslav Ježek, The lattice of equational theories. Part IV: Equational theories of finite algebras
- Jaroslav Ježek, Definability for equational theories of commutative groupoids
- Jaroslav Ježek, The ordering of commutative terms
- Jaroslav Ježek, The lattice of equational theories. Part III: Definability and automorphisms
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.