The lattice of equational theories. Part I: Modular elements

Jaroslav Ježek

Czechoslovak Mathematical Journal (1981)

  • Volume: 31, Issue: 1, page 127-152
  • ISSN: 0011-4642

How to cite

top

Ježek, Jaroslav. "The lattice of equational theories. Part I: Modular elements." Czechoslovak Mathematical Journal 31.1 (1981): 127-152. <http://eudml.org/doc/13247>.

@article{Ježek1981,
author = {Ježek, Jaroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {equational classes of algebras; lattice of equational classes; modular elements},
language = {eng},
number = {1},
pages = {127-152},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The lattice of equational theories. Part I: Modular elements},
url = {http://eudml.org/doc/13247},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Ježek, Jaroslav
TI - The lattice of equational theories. Part I: Modular elements
JO - Czechoslovak Mathematical Journal
PY - 1981
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 1
SP - 127
EP - 152
LA - eng
KW - equational classes of algebras; lattice of equational classes; modular elements
UR - http://eudml.org/doc/13247
ER -

References

top
  1. A. D. Bol'bot, О mnogoobrazijach ω -algebr, Algebra i logika 9/4 (1970), 406-414. (1970) MR0286733
  2. S. Burris, 10.1007/BF02944953, Algebra Universalis 1 (1971), 39-45. (1971) MR0291050DOI10.1007/BF02944953
  3. G. Grätzer, Universal algebra, second edition. (To appear.) MR0538623
  4. E. Jacobs, R. Schwabauer, 10.1080/00029890.1964.11992212, Amer. Math. Monthly 71 (1964), 151-155. (1964) Zbl0117.26003MR0162740DOI10.1080/00029890.1964.11992212
  5. J. Ježek, 10.4064/cm-20-2-159-179, Colloq. Math. 20 (1969), 159-179. (1969) MR0246813DOI10.4064/cm-20-2-159-179
  6. J. Ježek, Principal dual ideals in lattices of primitive classes, Comment. Math. Univ. Carolinae 9 (1968), 533-545. (1968) MR0244131
  7. J. Ježek, On atoms in lattices of primitive classes, Comment. Math. Univ. Carolinae (1970), 515-532. (1970) MR0269571
  8. J. Ježek, The existence о upper semicomplements in lattices of primitive classes, Comment. Math. Univ. Carolinae 12 (1971), 519-532. (1971) MR0292734
  9. J. Ježek, Upper semicomplements and a definable element in the lattice of groupoid varieties, Comment. Math. Univ. Carolinae 12 (1971), 565-586. (1971) MR0289398
  10. J. Ježek, 10.1007/BF02485826, Algebra Universalis 6 (1976), 147-158. (1976) MR0419332DOI10.1007/BF02485826
  11. J. Kalicki, 10.1016/S1385-7258(55)50090-4, Indag. Math. 17 (1955), 660-662. (1955) Zbl0073.24601MR0074351DOI10.1016/S1385-7258(55)50090-4
  12. R. McKenzie, 10.1016/0003-4843(71)90007-6, Annals of Math. Logic 3 (1971), 197-237. (1971) Zbl0328.02038MR0280349DOI10.1016/0003-4843(71)90007-6
  13. G. McNulty, 10.1016/0003-4843(76)90009-7, Annals of Math. Logic 10 (1976), 193-259. (1976) Zbl0376.08005MR0432440DOI10.1016/0003-4843(76)90009-7
  14. G. McNulty, Undecidable properties of finite sets of equations, J. Symbolic Logic (1977). (1977) MR0485307
  15. G. McNulty, Structural diversity in the lattice of equational theories, (To appear.) Zbl0799.08011MR0631723
  16. G. Pollák: O, n the existence of covers in lattices of varieties, 235-247 in: Contributions to general algebra. Proc. of the Klagenfurt Conference, May 25-28, 1978. Verlag Johannes Heyn, Klagenfurt 1979. (1978) MR0537424
  17. A. Tarski, Equational logic and equational theories of algebras, 275-288 in: H. A. Schmidt, K. Schütte and H. J. Thiele, eds.. Contributions to Mathematical Logic, North-Holland, Amsterdam 1968. (1968) Zbl0209.01402MR0237410
  18. W. Taylor, Equational logic, Houston J. of Math. (To appear.) Zbl0421.08004MR0546853
  19. A. N. Trachtman, О pokryvajuščich elementach v strukture mnogoobrazij algebr, Matem. Zametki 15 (1974), 307-312. (1974) 

Citations in EuDML Documents

top
  1. Jaroslav Ježek, The lattice of equational theories. Part II: The lattice of full sets of terms
  2. Boris M. Vernikov, On modular elements of the lattice of semigroup varieties
  3. Jaroslav Ježek, The lattice of equational theories. Part IV: Equational theories of finite algebras
  4. Jaroslav Ježek, Definability for equational theories of commutative groupoids
  5. Jaroslav Ježek, The ordering of commutative terms
  6. Jaroslav Ježek, The lattice of equational theories. Part III: Definability and automorphisms

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.