On o -ideals of groups of divisibility

Jiří Močkoř

Czechoslovak Mathematical Journal (1981)

  • Volume: 31, Issue: 3, page 390-403
  • ISSN: 0011-4642

How to cite

top

Močkoř, Jiří. "On $o$-ideals of groups of divisibility." Czechoslovak Mathematical Journal 31.3 (1981): 390-403. <http://eudml.org/doc/13268>.

@article{Močkoř1981,
author = {Močkoř, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {integral domain; group of units; topological groups of divisibility},
language = {eng},
number = {3},
pages = {390-403},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $o$-ideals of groups of divisibility},
url = {http://eudml.org/doc/13268},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Močkoř, Jiří
TI - On $o$-ideals of groups of divisibility
JO - Czechoslovak Mathematical Journal
PY - 1981
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 3
SP - 390
EP - 403
LA - eng
KW - integral domain; group of units; topological groups of divisibility
UR - http://eudml.org/doc/13268
ER -

References

top
  1. Bourbaki N., Algèbre commutative, Hermann, Paris, 196L Zbl1107.13002
  2. Conrad P., Lattice ordered groups, Tulane University 1970. (1970) Zbl0258.06011
  3. Gilmer R., Multiplicative ideal theory, Queen's Papers, Lecture Notes No. 12, Kingston, 1968. (1968) Zbl0155.36402MR0229624
  4. Gilmer R., Parker T., 10.1307/mmj/1029001210, Mich. Math. J. 21 (1974), 65-86. (1974) Zbl0285.13007MR0342635DOI10.1307/mmj/1029001210
  5. Gilmer R., Heinzer W. J., 10.1215/kjm/1250524273, J. Math. Kyoto Univ. 7 (1967), 133-150. (1967) Zbl0166.30601MR0223349DOI10.1215/kjm/1250524273
  6. Jaffard P., Les Systèmes d'Idéaux, Dunod, Paris, 1960. (1960) Zbl0101.27502MR0114810
  7. Kaplansky L, Commutative rings, Allyn and Bacon, Boston 1970. (1970) Zbl0203.34601MR0254021
  8. Maths E., Torsion-free modules, Univ. of Chicago Press, Chicago, 111., 1972. (1972) MR0344237
  9. Mockof J., A realization of öf-groups, Czech. Math. J. 27 (1977), 296-312. (1977) MR0447454
  10. Mockof J., Prüfer d-groups, Czech. Math. J. 28 (1978), 127-139. (1978) MR0491400
  11. Mockof J., A realization of groups of divisibility, Comment. Math. Univ. Sancti Pauli, Tokyo, XXVI (1911), 61-75. (1911) MR0466101
  12. Mockof J., Topological groups of divisibility, (to appear in Colloq. Math.). MR0522372
  13. Mockof J., A note on approximation theorems, (to appear in Arch. Math.). 
  14. Mott J. L., 10.4153/CJM-1974-049-2, Can. J. Math. XXVI (3), (1974), 532-542. (1974) Zbl0245.06008MR0364213DOI10.4153/CJM-1974-049-2
  15. Mott J. L., Schexnayder M., Exact sequences of semi-value groups, J. reine angew. Math., 283/284 (1976), 388-401. (1976) Zbl0347.13001MR0404247
  16. Nakano T., 10.1007/BF01111015, Math. Z. 99 (1967), 355-376. (1967) Zbl0149.27702MR0215765DOI10.1007/BF01111015
  17. Ohm J., 10.4153/CJM-1969-065-9, Can. J. Math. XXI (1969), 576-591. (1969) Zbl0177.06501MR0242819DOI10.4153/CJM-1969-065-9
  18. Ohm J., Pendleton R. L., On integral domains of the form D P , P , P minimal, J. reine angew. Math. 241 (1970), 147-159. (1970) MR0263793
  19. Rachůnek J., Directed convex subgroups of ordered groups, Acta Univ. Palac. Olomucensis Fac. R. Nat. 41 (1973), 39-46. (1973) MR0357273
  20. Rachůnek J., Prime subgroups of ordered groups, Czech. Math. J. 24 (1974), 541 - 551. (1974) MR0357274
  21. Sheldon P., Two counterexamples involving complete integral closure in finite dimensional Prüfer domains, (to appear in J. Algebra). Zbl0275.13008MR0332771

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.