Antitone operators and ordinary differential equations

Valter Šeda

Czechoslovak Mathematical Journal (1981)

  • Volume: 31, Issue: 4, page 531-553
  • ISSN: 0011-4642

How to cite

top

Šeda, Valter. "Antitone operators and ordinary differential equations." Czechoslovak Mathematical Journal 31.4 (1981): 531-553. <http://eudml.org/doc/13285>.

@article{Šeda1981,
author = {Šeda, Valter},
journal = {Czechoslovak Mathematical Journal},
keywords = {antitone operator; inverse monotone operator; lower and upper solution; ordered Banach space; two-point boundary value problems},
language = {eng},
number = {4},
pages = {531-553},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Antitone operators and ordinary differential equations},
url = {http://eudml.org/doc/13285},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Šeda, Valter
TI - Antitone operators and ordinary differential equations
JO - Czechoslovak Mathematical Journal
PY - 1981
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 4
SP - 531
EP - 553
LA - eng
KW - antitone operator; inverse monotone operator; lower and upper solution; ordered Banach space; two-point boundary value problems
UR - http://eudml.org/doc/13285
ER -

References

top
  1. Amann H., 10.1137/1018114, Siam Review 18 (1976), 620-709. (1976) Zbl0345.47044MR0415432DOI10.1137/1018114
  2. Amann H., 10.1016/0022-0396(76)90126-1, J. Differential Equations 21 (1976), 363-377. (1976) Zbl0319.35039MR0407451DOI10.1016/0022-0396(76)90126-1
  3. Bellman R., 10.1016/0022-247X(79)90013-1, J. Math. Anal. Appl. 67 (1979), 158-162. (1979) Zbl0418.47027MR0524469DOI10.1016/0022-247X(79)90013-1
  4. Coddington E. A., Levinson N., Theory of ordinary differential equations, Mc Graw-Hill Book Co., Inc., New York-Toronto-London 1955. (1955) Zbl0064.33002MR0069338
  5. Erbe L., 10.1216/RMJ-1971-1-4-709, Rocky Mountain J. Mathematics 1 (1971), 709-729. (1971) Zbl0242.34022MR0287072DOI10.1216/RMJ-1971-1-4-709
  6. Хохряков A. Я., К вопросу о периодической краевой задаче для дифференциального уравнения третьего порядка, Матем. сб. 63 (105) (1964), 639-645. (1964) Zbl1117.65300MR0165197
  7. Красносельский М. А., Вайникко Г. М., Забрейко П. П., Рутицкий Я. Б., Стеценко В. Й., Приближенное решение операторных уравнений, Издат. Наука, Москва, 1969. (1969) Zbl1231.90028
  8. Левин А. Ю., Неосцилляция решений уравнения x ( n ) + p 1 ( t ) x ( n - 1 ) + + p n ( t ) x = 0 , Успехи Мат. Наук 24 (1969), 44-96. (1969) 
  9. Šeda V., On an application of the Stone theorem in the theory of differential equations, Čas. Pěst. Mat. 97 (1972), 183-189. (1972) MR0348188
  10. Šeda V., 10.1016/0022-0396(77)90195-4, J. Differential Equations 26 (1977), 278-290. (1977) MR0460771DOI10.1016/0022-0396(77)90195-4
  11. Švec M., 10.1007/978-94-010-3323-7_15, G. E. O. Giacaglia, Periodic Orbits, Stability and Resonances, Reidel Publ. Co., Dordrecht 1970. (1970) MR0276554DOI10.1007/978-94-010-3323-7_15
  12. Tarski A., 10.2140/pjm.1955.5.285, Pacific J. Math. 5 (1955), 285-309. (1955) Zbl0064.26004MR0074376DOI10.2140/pjm.1955.5.285
  13. Tricomi F. G., Integral equations, (Russian translation). Издат. Иностр. Лит., Москва 1960. (1960) Zbl0092.10803MR0123160

Citations in EuDML Documents

top
  1. Valter Šeda, On some non-linear boundary value problems for ordinary differential equations
  2. Ján Rusnák, Method of successive approximations for a certain nonlinear third order boundary value problem
  3. Ján Rusnák, Constructions of lower and upper solutions for a nonlinear boundary value problem of the third order and their applications
  4. Milan Gera, Alexander Haščák, Sixty years of Professor Valter Šeda
  5. Boris Rudolf, Zbyněk Kubáček, Professor Šeda, septuagenerian

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.