A Conjugate Gradient Method and a Multigrid Algorithm for Morley' s Finite Element Approximation of the Biharmonic Equation.
Numerische Mathematik (1986/87)
- Volume: 50, page 567-586
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topBraess, D., and Peisker, P.. "A Conjugate Gradient Method and a Multigrid Algorithm for Morley' s Finite Element Approximation of the Biharmonic Equation.." Numerische Mathematik 50 (1986/87): 567-586. <http://eudml.org/doc/133173>.
@article{Braess1986/87,
author = {Braess, D., Peisker, P.},
journal = {Numerische Mathematik},
keywords = {biharmonic equation; nonconforming finite elements; preconditioned conjugate gradient methods; Morley's nonconforming displacement method; preconditioning; Poisson equations; multigrid algorithm; stepsize control; convergence; numerical results},
pages = {567-586},
title = {A Conjugate Gradient Method and a Multigrid Algorithm for Morley' s Finite Element Approximation of the Biharmonic Equation.},
url = {http://eudml.org/doc/133173},
volume = {50},
year = {1986/87},
}
TY - JOUR
AU - Braess, D.
AU - Peisker, P.
TI - A Conjugate Gradient Method and a Multigrid Algorithm for Morley' s Finite Element Approximation of the Biharmonic Equation.
JO - Numerische Mathematik
PY - 1986/87
VL - 50
SP - 567
EP - 586
KW - biharmonic equation; nonconforming finite elements; preconditioned conjugate gradient methods; Morley's nonconforming displacement method; preconditioning; Poisson equations; multigrid algorithm; stepsize control; convergence; numerical results
UR - http://eudml.org/doc/133173
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.