# A Conjugate Gradient Method and a Multigrid Algorithm for Morley' s Finite Element Approximation of the Biharmonic Equation.

Numerische Mathematik (1986/87)

- Volume: 50, page 567-586
- ISSN: 0029-599X; 0945-3245/e

## Access Full Article

top## How to cite

topBraess, D., and Peisker, P.. "A Conjugate Gradient Method and a Multigrid Algorithm for Morley' s Finite Element Approximation of the Biharmonic Equation.." Numerische Mathematik 50 (1986/87): 567-586. <http://eudml.org/doc/133173>.

@article{Braess1986/87,

author = {Braess, D., Peisker, P.},

journal = {Numerische Mathematik},

keywords = {biharmonic equation; nonconforming finite elements; preconditioned conjugate gradient methods; Morley's nonconforming displacement method; preconditioning; Poisson equations; multigrid algorithm; stepsize control; convergence; numerical results},

pages = {567-586},

title = {A Conjugate Gradient Method and a Multigrid Algorithm for Morley' s Finite Element Approximation of the Biharmonic Equation.},

url = {http://eudml.org/doc/133173},

volume = {50},

year = {1986/87},

}

TY - JOUR

AU - Braess, D.

AU - Peisker, P.

TI - A Conjugate Gradient Method and a Multigrid Algorithm for Morley' s Finite Element Approximation of the Biharmonic Equation.

JO - Numerische Mathematik

PY - 1986/87

VL - 50

SP - 567

EP - 586

KW - biharmonic equation; nonconforming finite elements; preconditioned conjugate gradient methods; Morley's nonconforming displacement method; preconditioning; Poisson equations; multigrid algorithm; stepsize control; convergence; numerical results

UR - http://eudml.org/doc/133173

ER -

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.