All-at-once preconditioning in PDE-constrained optimization

Tyrone Rees; Martin Stoll; Andy Wathen

Kybernetika (2010)

  • Volume: 46, Issue: 2, page 341-360
  • ISSN: 0023-5954

Abstract

top
The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how these system can be solved efficiently and discuss methods and preconditioners also in the case when bound constraints for the control are introduced. Numerical results will illustrate the competitiveness of our techniques.

How to cite

top

Rees, Tyrone, Stoll, Martin, and Wathen, Andy. "All-at-once preconditioning in PDE-constrained optimization." Kybernetika 46.2 (2010): 341-360. <http://eudml.org/doc/196697>.

@article{Rees2010,
abstract = {The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how these system can be solved efficiently and discuss methods and preconditioners also in the case when bound constraints for the control are introduced. Numerical results will illustrate the competitiveness of our techniques.},
author = {Rees, Tyrone, Stoll, Martin, Wathen, Andy},
journal = {Kybernetika},
keywords = {optimal control; preconditioning; partial differential equations; partial differential equations; optimal control; preconditioning; saddle point problem; numerical results},
language = {eng},
number = {2},
pages = {341-360},
publisher = {Institute of Information Theory and Automation AS CR},
title = {All-at-once preconditioning in PDE-constrained optimization},
url = {http://eudml.org/doc/196697},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Rees, Tyrone
AU - Stoll, Martin
AU - Wathen, Andy
TI - All-at-once preconditioning in PDE-constrained optimization
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 2
SP - 341
EP - 360
AB - The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how these system can be solved efficiently and discuss methods and preconditioners also in the case when bound constraints for the control are introduced. Numerical results will illustrate the competitiveness of our techniques.
LA - eng
KW - optimal control; preconditioning; partial differential equations; partial differential equations; optimal control; preconditioning; saddle point problem; numerical results
UR - http://eudml.org/doc/196697
ER -

References

top
  1. Bangerth, W., Hartmann, R., Kanschat, G., 10.1145/1268776.1268779, ACM Trans. Math. Software 33 (2007), 24, 27. MR2404402DOI10.1145/1268776.1268779
  2. Benzi, M., Golub, G. H., Liesen, J., 10.1017/S0962492904000212, Acta Numer. 14 (2005), 1–137. Zbl1115.65034MR2168342DOI10.1017/S0962492904000212
  3. Bergounioux, M., Ito, K., Kunisch, K., 10.1137/S0363012997328609, SIAM J. Control Optim. 37 (1999), 1176–1194 (electronic). Zbl0937.49017MR1691937DOI10.1137/S0363012997328609
  4. Bertsekas, D. P., 10.1137/0320018, SIAM J. Control Optim. 20 (1982), 221–246. Zbl0507.49018MR0646950DOI10.1137/0320018
  5. Bramble, J. H., Pasciak, J. E., 10.1090/S0025-5718-1988-0917816-8, Math. Comp 50 (1988), 1–17. Zbl0649.65061MR0917816DOI10.1090/S0025-5718-1988-0917816-8
  6. Collis, S. S., Heinkenschloss, M., Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems, Tech. Rep. TR02–01, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005–1892, 2002. 
  7. Elman, H. C., Multigrid and Krylov subspace methods for the discrete Stokes equations, In: Seventh Copper Mountain Conference on Multigrid Methods (N. D. Melson, T. A. Manteuffel, S. F. McCormick, and C. C. Douglas, eds.), Vol. CP 3339, Hampton 1996, NASA, pp. 283–299. Zbl0865.76078
  8. Elman, H. C., Silvester, D. J., Wathen, A. J., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. Zbl1083.76001MR2155549
  9. Engel, M., Griebel, M., A multigrid method for constrained optimal control problems: SFB-Preprint 406, Sonderforschungsbereich 611, Rheinische Friedrich-Wilhelms-Universität Bonn, 2008, Submitted. 
  10. Gee, M., Siefert, C., Hu, J., Tuminaro, R., Sala, M., ML 5.0 smoothed aggregation user’s guide, Tech. Rep. SAND2006-2649, Sandia National Laboratories, 2006. 
  11. Gill, P. E., Murray, W., Wright, M. H., Practical Optimization, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1981. Zbl0503.90062MR0634376
  12. Golub, G. H., Varga, R. S., 10.1007/BF01386013, successive over-relaxation iterative methods, and second order Richardson iterative methods. I. Numer. Math. 3 (1961), 147–156. Zbl0099.10903MR0145678DOI10.1007/BF01386013
  13. Golub, G. H., Varga, R. S., 10.1007/BF01386014, II. Numer. Math. 3 (1961), 157–168. MR0145679DOI10.1007/BF01386014
  14. Greenbaum, A., Iterative Methods for Solving Linear Systems, Vol. 17 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia 1997. Zbl0883.65022MR1474725
  15. Hestenes, M. R., Stiefel, E., 10.6028/jres.049.044, J. Res. Nat. Bur. Stand 49 (1952), 409–436 (1953)???. Zbl0048.09901MR0060307DOI10.6028/jres.049.044
  16. Hintermüller, M., Ito, K., Kunisch, K., 10.1137/S1052623401383558, SIAM J. Optim. 13 (2002), 865–888. MR1972219DOI10.1137/S1052623401383558
  17. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S., Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications. Springer-Verlag, New York 2009. Zbl1167.49001MR2516528
  18. Ito, K., Kunisch, K., Lagrange multiplier approach to variational problems and applications, Vol. 15 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2008. Zbl1156.49002MR2441683
  19. Murphy, M. F., Golub, G. H., Wathen, A. J., 10.1137/S1064827599355153, SIAM J. Sci. Comput. 21 (2000), 1969–1972. Zbl0959.65063MR1762024DOI10.1137/S1064827599355153
  20. Nocedal, J., Wright, S. J., Numerical Optimization, (Springer Series in Operations Research.) Springer-Verlag, New York 1999. Zbl1104.65059MR1713114
  21. Paige, C. C., Saunders, M. A., 10.1137/0712047, SIAM J. Numer. Anal. 12 (1975), 617–629. MR0383715DOI10.1137/0712047
  22. Peisker, P., Braess, D., 10.1007/BF01408577, Numer. Math. 50 (1987), 567–586. Zbl0595.65113MR0880336DOI10.1007/BF01408577
  23. Rees, T., Dollar, H. S., Wathen, A. J., 10.1137/080727154, SIAM J. Sci. Comput. 32 (2010), 271–298. MR2599778DOI10.1137/080727154
  24. Rees, T., Stoll, M., Block triangular preconditioners for PDE constrained optimization, Numer. Linear Algebra Appl., (2009), to appear. MR2759604
  25. Saad, Y., Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia 2003. Zbl1031.65046MR1990645
  26. Stoll, M., Solving Linear Systems Using the Adjoint, PhD. Thesis, University of Oxford 2009. 
  27. Stoll, M., Wathen, A., Preconditioning for active set and projected gradient methods as semi-smooth Newton methods for PDE-constrained optimization with control constraints, Submitted. 
  28. Tröltzsch, F., Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen, Vieweg Verlag, Wiesbaden 2005. 
  29. Wathen, A. J., 10.1093/imanum/7.4.449, IMA J. Numer. Anal. 7 (1987), 449–457. Zbl0648.65076MR0968517DOI10.1093/imanum/7.4.449
  30. Wathen, A. J., Rees, T., Chebyshev semi-iteration in preconditioning for problems including the mass matrix, Electron. Trans. Numer. Anal. 34 (2008–2009), 125–135. Zbl1189.65065MR2597805

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.