A finite element method for approximating the time-harmonic Maxwell equations.

Peter Monk

Numerische Mathematik (1992)

  • Volume: 63, Issue: 2, page 243-262
  • ISSN: 0029-599X; 0945-3245/e

How to cite

top

Monk, Peter. "A finite element method for approximating the time-harmonic Maxwell equations.." Numerische Mathematik 63.2 (1992): 243-262. <http://eudml.org/doc/133680>.

@article{Monk1992,
author = {Monk, Peter},
journal = {Numerische Mathematik},
keywords = {error estimates; curl conforming finite elements; time-harmonic Maxwell equations; Helmholtz decomposition; Numerical results},
number = {2},
pages = {243-262},
title = {A finite element method for approximating the time-harmonic Maxwell equations.},
url = {http://eudml.org/doc/133680},
volume = {63},
year = {1992},
}

TY - JOUR
AU - Monk, Peter
TI - A finite element method for approximating the time-harmonic Maxwell equations.
JO - Numerische Mathematik
PY - 1992
VL - 63
IS - 2
SP - 243
EP - 262
KW - error estimates; curl conforming finite elements; time-harmonic Maxwell equations; Helmholtz decomposition; Numerical results
UR - http://eudml.org/doc/133680
ER -

Citations in EuDML Documents

top
  1. Paul Houston, Ilaria Perugia, Anna Schneebeli, Dominik Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case
  2. Paul Houston, Ilaria Perugia, Anna Schneebeli, Dominik Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case
  3. Ana Alonso Rodriguez, Alberto Valli, Domain decomposition algorithms for time-harmonic Maxwell equations with damping
  4. Daniele Boffi, Lucia Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator
  5. Ana Alonso Rodriguez, Alberto Valli, Domain Decomposition Algorithms for Time-Harmonic Maxwell Equations with Damping
  6. Daniele Boffi, Lucia Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator

NotesEmbed ?

top

You must be logged in to post comments.