Page 1 Next

Displaying 1 – 20 of 262

Showing per page

A class of time discrete schemes for a phase–field system of Penrose–Fife type

Olaf Klein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a phase field system of Penrose–Fife type with non–conserved order parameter is considered. A class of time–discrete schemes for an initial–boundary value problem for this phase–field system is presented. In three space dimensions, convergence is proved and an error estimate linear with respect to the time–step size is derived.

A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations

Abigail Wacher (2013)

Open Mathematics

We compare numerical experiments from the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, applied to three benchmark problems based on two different partial differential equations. Both methods are described in detail and we highlight some strengths and weaknesses of each method via the numerical comparisons. The two equations used in the benchmark problems are the viscous Burgers’ equation and the porous medium equation, both...

A finite difference method for quasi-linear and nonlinear differential functional parabolic equations with Dirichlet's condition

Lucjan Sapa (2008)

Annales Polonici Mathematici

We deal with a finite difference method for a wide class of nonlinear, in particular strongly nonlinear or quasi-linear, second-order partial differential functional equations of parabolic type with Dirichlet's condition. The functional dependence is of the Volterra type and the right-hand sides of the equations satisfy nonlinear estimates of the generalized Perron type with respect to the functional variable. Under the assumptions adopted, quasi-linear equations are a special case of nonlinear...

A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme

Hyam Abboud, Toni Sayah (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a two-grid scheme fully discrete in time and space for solving the Navier-Stokes system. In the first step, the fully non-linear problem is discretized in space on a coarse grid with mesh-size H and time step k. In the second step, the problem is discretized in space on a fine grid with mesh-size h and the same time step, and linearized around the velocity uH computed in the first step. The two-grid strategy is motivated by the fact that under suitable assumptions, the contribution of uH...

A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation

D. Chapelle, A. Gariah, P. Moireau, J. Sainte-Marie (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the...

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived...

A “Natural” Norm for the Method of Characteristics Using Discontinuous Finite Elements : 2D and 3D case

Jacques Baranger, Ahmed Machmoum (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the numerical approximation of a first order stationary hyperbolic equation by the method of characteristics with pseudo time step k using discontinuous finite elements on a mesh 𝒯 h . For this method, we exhibit a “natural” norm || ||h,k for which we show that the discrete variational problem P h k is well posed and we obtain an error estimate. We show that when k goes to zero problem ( P h k ) (resp. the || ||h,k norm) has as a limit problem (Ph) (resp. the || ||h norm) associated to the...

A new conservative finite difference scheme for Boussinesq paradigm equation

Natalia Kolkovska, Milena Dimova (2012)

Open Mathematics

A family of nonlinear conservative finite difference schemes for the multidimensional Boussinesq Paradigm Equation is considered. A second order of convergence and a preservation of the discrete energy for this approach are proved. Existence and boundedness of the discrete solution on an appropriate time interval are established. The schemes have been numerically tested on the models of the propagation of a soliton and the interaction of two solitons. The numerical experiments demonstrate that the...

A new error estimate for a fully finite element discretization scheme for parabolic equations using Crank-Nicolson method

Abdallah Bradji, Jürgen Fuhrmann (2014)

Mathematica Bohemica

Finite element methods with piecewise polynomial spaces in space for solving the nonstationary heat equation, as a model for parabolic equations are considered. The discretization in time is performed using the Crank-Nicolson method. A new a priori estimate is proved. Thanks to this new a priori estimate, a new error estimate in the discrete norm of 𝒲 1 , ( 2 ) is proved. An ( 1 ) -error estimate is also shown. These error estimates are useful since they allow us to get second order time accurate approximations...

A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations

Irene Kyza (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We prove a posteriori error estimates of optimal order for linear Schrödinger-type equations in the L∞(L2)- and the L∞(H1)-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis et al. in [Math. Comput. 75 (2006) 511–531], leads to a posteriori upper bounds that are of optimal order in the L∞(L2)-norm, but of suboptimal order in the L∞(H1)-norm. The optimality in the case of L∞(H1)-norm is recovered by using...

Currently displaying 1 – 20 of 262

Page 1 Next