On differentiation of metric projections in finite dimensional Banach spaces
Czechoslovak Mathematical Journal (1983)
- Volume: 33, Issue: 3, page 325-336
- ISSN: 0011-4642
Access Full Article
topHow to cite
topZajíček, Luděk. "On differentiation of metric projections in finite dimensional Banach spaces." Czechoslovak Mathematical Journal 33.3 (1983): 325-336. <http://eudml.org/doc/13387>.
@article{Zajíček1983,
author = {Zajíček, Luděk},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite-dimensional Banach space; Frechet derivative; metric projection},
language = {eng},
number = {3},
pages = {325-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On differentiation of metric projections in finite dimensional Banach spaces},
url = {http://eudml.org/doc/13387},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Zajíček, Luděk
TI - On differentiation of metric projections in finite dimensional Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 1983
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 3
SP - 325
EP - 336
LA - eng
KW - finite-dimensional Banach space; Frechet derivative; metric projection
UR - http://eudml.org/doc/13387
ER -
References
top- E. Asplund, Differentiability of the metric projection in finite-dimensional Euclidean space, Proc. Amer. Math. Soc. 38 (1973), 218-219. (1973) Zbl0269.52002MR0310150
- J. Dieudonné, Éléments d'analyse, Tome I: Fondements de l'analyse moderne, Paris 1972. (1972)
- P. Erdös, 10.1090/S0002-9904-1946-08514-6, Bull. Amer. Math. Soc. 52 (1946), 107-109. (1946) MR0015144DOI10.1090/S0002-9904-1946-08514-6
- H. Federer, Geometric Measure Theory, Springer-Verlag, New York 1969. (1969) Zbl0176.00801MR0257325
- V. Jarník, Differential Calculus II, Prague 1956 (Czech). (1956)
- P. S. Kenderov, Points of single-valuedness of multivalued monotone mappings in finite dimensional spaces, Serdica 2 (1976), 160-164. (1976) Zbl0346.47044MR0477890
- S. V. Konjagin, Approximation properties of arbitrary sets in Banach spaces, Dokl. Akad. Nauk SSSR, 239 (1978), No. 2, 261-264 (Russian). (1978) MR0493113
- J. B. Kruskal, 10.1090/S0002-9939-1969-0259752-9, Proc. Amer. Math. Soc. 23 (1969), 697-703. (1969) Zbl0184.47401MR0259752DOI10.1090/S0002-9939-1969-0259752-9
- E. J. Mc Shane, 10.1090/S0002-9904-1934-05978-0, Bull. Amer. Math. Soc. 40 (1934), 837-842. (1934) MR1562984DOI10.1090/S0002-9904-1934-05978-0
- F. Mignot, 10.1016/0022-1236(76)90017-3, J. Functional Analysis 22 (1976), 130-185. (1976) MR0423155DOI10.1016/0022-1236(76)90017-3
- C. J. Neugebauer, A theorem on derivatives, Acta Sci. Math. (Szeged). 23 (1962), 79-81. (1962) Zbl0105.04602MR0140624
- R. T. Rockafellar, Convex Analysis, Princeton 1970. (1970) Zbl0193.18401MR0274683
- S. Saks, Theory of the Integral, New York 1937. (1937) Zbl0017.30004
- S. Stečkin, Approximation properties of sets in normed linear spaces, Rev. Math. Pures Appl. 8 (1963), 5-18 (Russian). (1963) MR0155168
- Z. Zahorski, 10.24033/bsmf.1381, Bull. Soc. Math. France, 74 (1946), 147-178. (1946) MR0022592DOI10.24033/bsmf.1381
- L. Zajíček, On the points of multivaluedness of metric projections in separable Banach spaces, Comment. Math. Univ. Carolinae 19 (1978), 513 - 523. (1978) MR0508958
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.