On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 4, page 943-951
  • ISSN: 0011-4642

Abstract

top
Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

How to cite

top

Sjödin, Tord. "On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb {R}^n)$, $2<p<\infty $." Czechoslovak Mathematical Journal 68.4 (2018): 943-951. <http://eudml.org/doc/294577>.

@article{Sjödin2018,
abstract = {Let $F$ be a closed subset of $\mathbb \{R\}^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb \{R\}^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb \{R\}^n$ in the Euclidean case $p=2$. We consider the case $2<p<\infty $ and prove that the $i$th component $P_i(x)$ of $P(x)$ is differentiable a.e. if $P_i(x)\ne x_i$ and satisfies Hölder condition of order $1/(p-1)$ if $P_i(x)=x_i$.},
author = {Sjödin, Tord},
journal = {Czechoslovak Mathematical Journal},
keywords = {normed space; uniform convexity; closed set; metric projection; $l^p$-space; Fréchet differential; Lipschitz condition},
language = {eng},
number = {4},
pages = {943-951},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb \{R\}^n)$, $2<p<\infty $},
url = {http://eudml.org/doc/294577},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Sjödin, Tord
TI - On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb {R}^n)$, $2<p<\infty $
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 943
EP - 951
AB - Let $F$ be a closed subset of $\mathbb {R}^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb {R}^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb {R}^n$ in the Euclidean case $p=2$. We consider the case $2<p<\infty $ and prove that the $i$th component $P_i(x)$ of $P(x)$ is differentiable a.e. if $P_i(x)\ne x_i$ and satisfies Hölder condition of order $1/(p-1)$ if $P_i(x)=x_i$.
LA - eng
KW - normed space; uniform convexity; closed set; metric projection; $l^p$-space; Fréchet differential; Lipschitz condition
UR - http://eudml.org/doc/294577
ER -

References

top
  1. Abatzoglou, T., 10.2307/2042418, Proc. Am. Math. Soc. 78 (1980), 492-496. (1980) Zbl0475.41035MR0556619DOI10.2307/2042418
  2. Asplund, E., 10.2307/2038801, Proc. Am. Math. Soc. 38 (1973), 218-219. (1973) MR0310150DOI10.2307/2038801
  3. Clarkson, J., 10.2307/1989630, Trans. Am. Math. Soc. 40 (1936), 396-414. (1936) Zbl0015.35604MR1501880DOI10.2307/1989630
  4. Federer, H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, Berlin (1969). (1969) Zbl0176.00801MR0257325
  5. Fitzpatrick, S., Phelps, R. R., 10.2307/1999857, Trans. Am. Math. Soc. 270 (1982), 483-501. (1982) Zbl0504.41029MR0645326DOI10.2307/1999857
  6. Hanner, O., 10.1007/BF02589410, Ark. Mat. 3 (1956), 239-244. (1956) Zbl0071.32801MR0077087DOI10.1007/BF02589410
  7. Kruskal, J. B., 10.2307/2036613, Proc. Am. Math. Soc. 23 (1969), 697-703. (1969) Zbl0184.47401MR0259752DOI10.2307/2036613
  8. Phelps, R. R., 10.2307/2033300, Proc. Am. Math. Soc. 8 (1957), 790-797. (1957) Zbl0078.35701MR0087897DOI10.2307/2033300
  9. Phelps, R. R., 10.2307/2033319, Proc. Am. Math. Soc. 9 (1958), 867-873. (1958) Zbl0109.14901MR0104139DOI10.2307/2033319
  10. Rešetnyak, Ju. G., Generalized derivatives and differentiability almost everywhere, Mat. Sb., N. Ser. 75(117) (1968), 323-334 Russian. (1968) Zbl0165.47202MR0225159
  11. Shapiro, A., 10.1007/s10957-016-0871-8, J. Optim. Theory Appl. 169 (2016), 953-964. (2016) Zbl1342.90192MR3501393DOI10.1007/s10957-016-0871-8
  12. Zajíček, L., On differentiation of metric projections in finite dimensional Banach spaces, Czech. Math. J. 33 (1983), 325-336. (1983) Zbl0551.41048MR0718916

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.