On almost everywhere differentiability of the metric projection on closed sets in ,
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 4, page 943-951
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSjödin, Tord. "On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb {R}^n)$, $2<p<\infty $." Czechoslovak Mathematical Journal 68.4 (2018): 943-951. <http://eudml.org/doc/294577>.
@article{Sjödin2018,
abstract = {Let $F$ be a closed subset of $\mathbb \{R\}^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb \{R\}^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb \{R\}^n$ in the Euclidean case $p=2$. We consider the case $2<p<\infty $ and prove that the $i$th component $P_i(x)$ of $P(x)$ is differentiable a.e. if $P_i(x)\ne x_i$ and satisfies Hölder condition of order $1/(p-1)$ if $P_i(x)=x_i$.},
author = {Sjödin, Tord},
journal = {Czechoslovak Mathematical Journal},
keywords = {normed space; uniform convexity; closed set; metric projection; $l^p$-space; Fréchet differential; Lipschitz condition},
language = {eng},
number = {4},
pages = {943-951},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb \{R\}^n)$, $2<p<\infty $},
url = {http://eudml.org/doc/294577},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Sjödin, Tord
TI - On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb {R}^n)$, $2<p<\infty $
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 943
EP - 951
AB - Let $F$ be a closed subset of $\mathbb {R}^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb {R}^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb {R}^n$ in the Euclidean case $p=2$. We consider the case $2<p<\infty $ and prove that the $i$th component $P_i(x)$ of $P(x)$ is differentiable a.e. if $P_i(x)\ne x_i$ and satisfies Hölder condition of order $1/(p-1)$ if $P_i(x)=x_i$.
LA - eng
KW - normed space; uniform convexity; closed set; metric projection; $l^p$-space; Fréchet differential; Lipschitz condition
UR - http://eudml.org/doc/294577
ER -
References
top- Abatzoglou, T., 10.2307/2042418, Proc. Am. Math. Soc. 78 (1980), 492-496. (1980) Zbl0475.41035MR0556619DOI10.2307/2042418
- Asplund, E., 10.2307/2038801, Proc. Am. Math. Soc. 38 (1973), 218-219. (1973) MR0310150DOI10.2307/2038801
- Clarkson, J., 10.2307/1989630, Trans. Am. Math. Soc. 40 (1936), 396-414. (1936) Zbl0015.35604MR1501880DOI10.2307/1989630
- Federer, H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, Berlin (1969). (1969) Zbl0176.00801MR0257325
- Fitzpatrick, S., Phelps, R. R., 10.2307/1999857, Trans. Am. Math. Soc. 270 (1982), 483-501. (1982) Zbl0504.41029MR0645326DOI10.2307/1999857
- Hanner, O., 10.1007/BF02589410, Ark. Mat. 3 (1956), 239-244. (1956) Zbl0071.32801MR0077087DOI10.1007/BF02589410
- Kruskal, J. B., 10.2307/2036613, Proc. Am. Math. Soc. 23 (1969), 697-703. (1969) Zbl0184.47401MR0259752DOI10.2307/2036613
- Phelps, R. R., 10.2307/2033300, Proc. Am. Math. Soc. 8 (1957), 790-797. (1957) Zbl0078.35701MR0087897DOI10.2307/2033300
- Phelps, R. R., 10.2307/2033319, Proc. Am. Math. Soc. 9 (1958), 867-873. (1958) Zbl0109.14901MR0104139DOI10.2307/2033319
- Rešetnyak, Ju. G., Generalized derivatives and differentiability almost everywhere, Mat. Sb., N. Ser. 75(117) (1968), 323-334 Russian. (1968) Zbl0165.47202MR0225159
- Shapiro, A., 10.1007/s10957-016-0871-8, J. Optim. Theory Appl. 169 (2016), 953-964. (2016) Zbl1342.90192MR3501393DOI10.1007/s10957-016-0871-8
- Zajíček, L., On differentiation of metric projections in finite dimensional Banach spaces, Czech. Math. J. 33 (1983), 325-336. (1983) Zbl0551.41048MR0718916
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.