Projectively generated convergence of sequences
Czechoslovak Mathematical Journal (1983)
- Volume: 33, Issue: 4, page 525-536
- ISSN: 0011-4642
Access Full Article
topHow to cite
topFrič, Roman, and Hušek, Miroslav. "Projectively generated convergence of sequences." Czechoslovak Mathematical Journal 33.4 (1983): 525-536. <http://eudml.org/doc/13412>.
@article{Frič1983,
author = {Frič, Roman, Hušek, Miroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {sequential regularity; sequential completeness; closure space; sequential convergence space; generalized sequential envelopes},
language = {eng},
number = {4},
pages = {525-536},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Projectively generated convergence of sequences},
url = {http://eudml.org/doc/13412},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Frič, Roman
AU - Hušek, Miroslav
TI - Projectively generated convergence of sequences
JO - Czechoslovak Mathematical Journal
PY - 1983
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 4
SP - 525
EP - 536
LA - eng
KW - sequential regularity; sequential completeness; closure space; sequential convergence space; generalized sequential envelopes
UR - http://eudml.org/doc/13412
ER -
References
top- W. W. Comfort S. Negrepontis, The theory of ultrafilters, Springer-Verlag 1974. (1974) MR0396267
- L. Gillman M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960. (1960) MR0116199
- J. de Groot, 10.1007/BF01369667, I. Math. Ann. 138 (1959), 80-102. (1959) Zbl0087.37802MR0119193DOI10.1007/BF01369667
- R. Frič, Sequential envelope and subspaces of the Čech-Stone compactification. General Topology and its Relations to Modern Analysis and Algebra III, (Proc. Third Prague Topological Sympos., 1971). Academia, Praha, 1972, 123-126. (1971) MR0353260
- R. Frič, On the completion of sequential structures, Topology and its Appl. (Budva 1972), Beograd 1973, 94-96. (1972) MR0341419
- R. Frič, Extension of sequentially continuous mappings, Comment. Math. Univ. Carolin. 16 (1975), 273-276. (1975) MR0372809
- R. Frič, On -sequentially regular spaces, Czechoslovak Math. J. 26 (101) (1976), 604-612. (1976) MR0428240
- R. Frič M. Hušek, On projectively generated spaces, Comment. Math. Univ. Carolin. 20 (1979), 194. (1979)
- R. Frič M. Hušek, Epireflective subcategories of convergence spaces, Eight Winter School on Abstract Analysis held January 27-February 10, 1980, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha 1980, 68-72. (1980)
- R. Frič D. С. Kent, Completion of sequential Cauchy spaces, Comment. Math. Univ. Carolin. 18 (1977), 351-361. (1977) MR0448300
- R. Frič V. Koutník, Sequential structures. Convergence structures and applications to analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik, 1979, NR 4 N. Akademie Verlag, Berlin 1980, 37-56. (1979) MR0614000
- R. Frič V. Koutník, Sequentially complete spaces, Czechoslovak Math. J. 29 (104) (1979), 287-297. (1979) MR0529516
- V. Koutník, On sequentially regular convergence spaces, Czechoslovak Math. J. 17 (92) (1967), 232-247. (1967) MR0215277
- V. Koutník, Sequential envelopes and completeness, Proc. I. Internat. Sympos. on Extension theory of topological structures, Berlin, 1967. VEB Deutscher Verlag der Wissenschaften, Berlin, 1969, 141-143. (1967)
- S. Mrówka, Recent results on -compact spaces and structures of continuous functions, Proc. Univ. Oklahoma Top. Conf. (1972), 168-221. (1972) MR0358693
- J. Novák, On convergence spaces and their sequential envelopes, Czechoslovak Math. J. 15 (90) (1965), 74-100. (1965) MR0175083
- J. Novák, On sequential envelopes defined by means of certain classes of continuous functions, Czechoslovak Math. J. 18 (93) (1968), 450-465. (1968) MR0232335
- J. Terasawa, Spaces need not be strongly -dimensional, Bull. Pol. Acad. Sci. 25 (1977), 279-281. (1977) MR0451214
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.