A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks
Czechoslovak Mathematical Journal (1984)
- Volume: 34, Issue: 1, page 156-162
- ISSN: 0011-4642
Access Full Article
topHow to cite
topNeumann, Michael M.. "A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks." Czechoslovak Mathematical Journal 34.1 (1984): 156-162. <http://eudml.org/doc/13436>.
@article{Neumann1984,
author = {Neumann, Michael M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {network theory; flows and cuts; sublinear operators; existence of maximal flows on generalized networks; biadditive set functions; Dedekind complete ordered vector space; Ford-Fulkerson theorem; Mazur-Orlicz theorem},
language = {eng},
number = {1},
pages = {156-162},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks},
url = {http://eudml.org/doc/13436},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Neumann, Michael M.
TI - A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks
JO - Czechoslovak Mathematical Journal
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 1
SP - 156
EP - 162
LA - eng
KW - network theory; flows and cuts; sublinear operators; existence of maximal flows on generalized networks; biadditive set functions; Dedekind complete ordered vector space; Ford-Fulkerson theorem; Mazur-Orlicz theorem
UR - http://eudml.org/doc/13436
ER -
References
top- Ford L. R., Fulkerson D. R., Flows in Networks, Princeton, New Jersey. Princeton University Press 1962. (1962) Zbl0106.34802MR0159700
- Fuchssteiner В., 10.2140/pjm.1981.94.303, Pacific J. Math. 94, 303-309 (1981). (1981) Zbl0491.28011MR0628582DOI10.2140/pjm.1981.94.303
- König H., Neumann M., Mathepiatische Wirtschaftstheorie, Vorlesungsaiisarbeitung. Saarbrücken 1976. (1976)
- Mazur S., Orlicz W., 10.4064/sm-13-2-137-179, Studia Math. 13, 137-179 (1953). (1953) Zbl0052.11103MR0068730DOI10.4064/sm-13-2-137-179
- Peressini A. L., Ordered Topological Vector Spaces, New York-Evanston-London. Harper and Row 1967. (1967) Zbl0169.14801MR0227731
- Pták V., 10.4064/sm-15-3-365-366, Studia Math. 75, 365-366 (1956). (1956) MR0080880DOI10.4064/sm-15-3-365-366
- Vogel W., Lineares Optimieren, Leipzig. Akad. Verlagsgesellschaft Geest & Portig 1970. (1970) Zbl0197.45601MR0323337
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.