A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks

Michael M. Neumann

Czechoslovak Mathematical Journal (1984)

  • Volume: 34, Issue: 1, page 156-162
  • ISSN: 0011-4642

How to cite

top

Neumann, Michael M.. "A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks." Czechoslovak Mathematical Journal 34.1 (1984): 156-162. <http://eudml.org/doc/13436>.

@article{Neumann1984,
author = {Neumann, Michael M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {network theory; flows and cuts; sublinear operators; existence of maximal flows on generalized networks; biadditive set functions; Dedekind complete ordered vector space; Ford-Fulkerson theorem; Mazur-Orlicz theorem},
language = {eng},
number = {1},
pages = {156-162},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks},
url = {http://eudml.org/doc/13436},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Neumann, Michael M.
TI - A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks
JO - Czechoslovak Mathematical Journal
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 1
SP - 156
EP - 162
LA - eng
KW - network theory; flows and cuts; sublinear operators; existence of maximal flows on generalized networks; biadditive set functions; Dedekind complete ordered vector space; Ford-Fulkerson theorem; Mazur-Orlicz theorem
UR - http://eudml.org/doc/13436
ER -

References

top
  1. Ford L. R., Fulkerson D. R., Flows in Networks, Princeton, New Jersey. Princeton University Press 1962. (1962) Zbl0106.34802MR0159700
  2. Fuchssteiner В., 10.2140/pjm.1981.94.303, Pacific J. Math. 94, 303-309 (1981). (1981) Zbl0491.28011MR0628582DOI10.2140/pjm.1981.94.303
  3. König H., Neumann M., Mathepiatische Wirtschaftstheorie, Vorlesungsaiisarbeitung. Saarbrücken 1976. (1976) 
  4. Mazur S., Orlicz W., 10.4064/sm-13-2-137-179, Studia Math. 13, 137-179 (1953). (1953) Zbl0052.11103MR0068730DOI10.4064/sm-13-2-137-179
  5. Peressini A. L., Ordered Topological Vector Spaces, New York-Evanston-London. Harper and Row 1967. (1967) Zbl0169.14801MR0227731
  6. Pták V., 10.4064/sm-15-3-365-366, Studia Math. 75, 365-366 (1956). (1956) MR0080880DOI10.4064/sm-15-3-365-366
  7. Vogel W., Lineares Optimieren, Leipzig. Akad. Verlagsgesellschaft Geest & Portig 1970. (1970) Zbl0197.45601MR0323337

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.