The uniform classification of boundedly compact locally convex spaces

Sven Heinrich

Czechoslovak Mathematical Journal (1986)

  • Volume: 36, Issue: 1, page 68-71
  • ISSN: 0011-4642

How to cite

top

Heinrich, Sven. "The uniform classification of boundedly compact locally convex spaces." Czechoslovak Mathematical Journal 36.1 (1986): 68-71. <http://eudml.org/doc/13558>.

@article{Heinrich1986,
author = {Heinrich, Sven},
journal = {Czechoslovak Mathematical Journal},
keywords = {Montel-Fréchet space; boundedly compact; linearly homeomorpic; uniformly homeomorphic with respect to their weak-star topologies},
language = {eng},
number = {1},
pages = {68-71},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The uniform classification of boundedly compact locally convex spaces},
url = {http://eudml.org/doc/13558},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Heinrich, Sven
TI - The uniform classification of boundedly compact locally convex spaces
JO - Czechoslovak Mathematical Journal
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 1
SP - 68
EP - 71
LA - eng
KW - Montel-Fréchet space; boundedly compact; linearly homeomorpic; uniformly homeomorphic with respect to their weak-star topologies
UR - http://eudml.org/doc/13558
ER -

References

top
  1. I. Aharoni J. Lindenstrauss, 10.1090/S0002-9904-1978-14475-9, Bull. Amer. Math. Soc. 84 (1978), 281-283. (1978) MR0482074DOI10.1090/S0002-9904-1978-14475-9
  2. N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 58 (1976), 147-190. (1976) Zbl0342.46034MR0425608
  3. J. P. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, II Coll. Anal. Fonct., Bordeaux, 1973, 29-39. (1973) Zbl0302.43001MR0361770
  4. W. J. Davis T. Figiel W. B. Johnson A. Pelczyński, 10.1016/0022-1236(74)90044-5, J. Funct. Analysis 17 (1974), 311-327. (1974) MR0355536DOI10.1016/0022-1236(74)90044-5
  5. R. E. Edwards, Functional analysis, Holt, Rinehart and Winston, New York 1965. (1965) Zbl0182.16101MR0221256
  6. P. Enflo, 10.1007/BF02771561, II, Israel J. Math. 8 (1970), 253-272. (1970) Zbl0214.28501MR0263969DOI10.1007/BF02771561
  7. S. Heinrich P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), 49-75. (1982) MR0675426
  8. P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29. (1973) Zbl0219.46006MR0331055
  9. P. Mankiewicz, On topological, Lipschitz, and uniform classification of L F -spaces, Studia Math. 52 (1974), 109-142. (1974) Zbl0328.46005MR0402448
  10. P. Mankiewicz J. Vilímovský, 10.1216/RMJ-1980-10-1-59, Rocky Mountain J. Math. 10 (1980), 59-64. (1980) MR0573861DOI10.1216/RMJ-1980-10-1-59

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.