A Characterization of Schwartz Spaces.
A Characterization of Totally Reflexive Fréchet Spaces.
A Complex Characterization of the Schwartz Space D (...).
A note on embedding into product spaces
Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of , thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.
A Note on Vanishing of the Factor Ext for Köthe Spaces.
A remark on Schwartz spaces consistent with a duality
A Result on Equicontinuous Sets of Operators on Nuclear Fréchet Spaces Related to the Bounded Approximation Property.
A Structure Theorem for Schwartz Spaces.
A theorem on the weak topology of C(X) for compact scattered X
A Twisted Fréchet Space with Basis.
Absolute bases, tensor products and a theorem of Bohr
An Example of a Nuclear Fréchet Space Without the Bounded Approximation Property.
Analogies entre l'holomorphie et la linéarité
Analytic functionals on fully nuclear spaces
Analytic isomorphisms of infinite dimensional polydiscs and an application
Anticommutative analytic forms on fully nuclear spaces.
Approximation von Elementen eines lokalkonvexen Raumes
Associated weights and spaces of holomorphic functions
When treating spaces of holomorphic functions with growth conditions, one is led to introduce associated weights. In our main theorem we characterize, in terms of the sequence of associated weights, several properties of weighted (LB)-spaces of holomorphic functions on an open subset which play an important role in the projective description problem. A number of relevant examples are provided, and a “new projective description problem” is posed. The proof of our main result can also serve to characterize...
Atomic decomposition of a weighted inductive limit.
Estudiamos algunas cuestiones estructurales acerca del espacio localmente convexo HV∞, que está formado por funciones analíticas en el disco unidad abierto. Construimos una descomposición atómica de este espacio, usando un retículo de puntos del disco unidad que es más denso que el usual. También demostramos que HV∞ no es nuclear.