Dimension of amalgamated graphs and trees

Peter Alles

Czechoslovak Mathematical Journal (1986)

  • Volume: 36, Issue: 3, page 393-416
  • ISSN: 0011-4642

How to cite

top

Alles, Peter. "Dimension of amalgamated graphs and trees." Czechoslovak Mathematical Journal 36.3 (1986): 393-416. <http://eudml.org/doc/13590>.

@article{Alles1986,
author = {Alles, Peter},
journal = {Czechoslovak Mathematical Journal},
keywords = {direct product; weak product; strong product; graph homomorphism; embedding; dimension; amalgamation},
language = {eng},
number = {3},
pages = {393-416},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dimension of amalgamated graphs and trees},
url = {http://eudml.org/doc/13590},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Alles, Peter
TI - Dimension of amalgamated graphs and trees
JO - Czechoslovak Mathematical Journal
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 3
SP - 393
EP - 416
LA - eng
KW - direct product; weak product; strong product; graph homomorphism; embedding; dimension; amalgamation
UR - http://eudml.org/doc/13590
ER -

References

top
  1. P. Alles, Estimation of the Dimension of Some Types of Graph by Means of Orthogonal Latin Squares, Preprint-Nr. 749, TH Darmstadt, 1983. (1983) 
  2. P. Alles, On the Dimension of Sums, Amalgams and Weak Products of Graphs, manuscript, 1983. (1983) 
  3. P. Alles, 10.1016/0012-365X(85)90083-4, in: Discrete Math. 54, 1985, p. 229-233. (1985) Zbl0581.05048MR0791663DOI10.1016/0012-365X(85)90083-4
  4. P. Křivka, On the Dimension of Odd Cycles and Cartesian Cubes, in: Coll. Math. Soc. J. Bolyai 25, 1981, p. 435-443. (1981) MR0642056
  5. P. Křivka, Dimension of the Sum of Two Copies of a Graph, in: Czech. Math. J. 31 (106), 1981, p. 514-520. (1981) MR0631599
  6. L. Lovász J. Nešetřil, A. Pultr, On a Product Dimension of Graphs, in: J. of Comb. Theory, В 29, 1980, p. 47-67. (1980) MR0584160
  7. J. Nešetřil, Representations of Graphs by Means of Products and their Complexity, in: Mathematical Foundations of Computer Science, LN in Comp. Sci. 118, 1981, p. 94-102: (1981) MR0652742
  8. J. Nešetřil, A. Pultr, A Dushnik-Miller type Dimension of Graphs and its Complexity, in: Fundamentals of Computation Theory, LN in Comp. Sci. 50, 1977, p. 482-493. (1977) MR0491363
  9. J. Nešetřil, A. Pultr, Product and other Representations of Graphs and Related Characteristics, in: Coll. Math. Soc. J. Bolyai 25, 1981, p. 571 - 598. (1981) MR0642062
  10. S. Poljak, A. Pultr, 10.1016/0012-365X(81)90064-9, in: Discrete Math. 34, 1981, p. 165-171. (1981) Zbl0476.05075MR0611429DOI10.1016/0012-365X(81)90064-9
  11. S. Poljak, A. Pultr, Representing Graphs by Means of Strong and Weak Products, in: Comm. Math. Universitatis Carolinae 22, 3, 1981, p. 449-465. (1981) Zbl0476.05074MR0633576
  12. S. Poljak, V. Rödl, Orthogonal Partitions and Coverings of Graphs, in: Czech. Math. J 30 (105), 1980, p. 475-485. (1980) MR0583626
  13. S. Poljak, D. Turzik, A Note on Dimension of P 3 n , in: Czech. Math. J. 31 (106), 1981, p. 484-487. (1981) MR0626922

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.