Dependences between definitions of finiteness

Ladislav Spišiak; Peter Vojtáš

Czechoslovak Mathematical Journal (1988)

  • Volume: 38, Issue: 3, page 389-397
  • ISSN: 0011-4642

How to cite

top

Spišiak, Ladislav, and Vojtáš, Peter. "Dependences between definitions of finiteness." Czechoslovak Mathematical Journal 38.3 (1988): 389-397. <http://eudml.org/doc/13713>.

@article{Spišiak1988,
author = {Spišiak, Ladislav, Vojtáš, Peter},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite set; finiteness},
language = {eng},
number = {3},
pages = {389-397},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dependences between definitions of finiteness},
url = {http://eudml.org/doc/13713},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Spišiak, Ladislav
AU - Vojtáš, Peter
TI - Dependences between definitions of finiteness
JO - Czechoslovak Mathematical Journal
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 3
SP - 389
EP - 397
LA - eng
KW - finite set; finiteness
UR - http://eudml.org/doc/13713
ER -

References

top
  1. A. Blass, 10.1090/conm/031/763890, In J. E. Baumgartner, D. A. Martin, S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 31 (1984) 31 - 33. (1984) Zbl0557.03030MR0763890DOI10.1090/conm/031/763890
  2. J. D. Halpern P. E. Howard, Cardinals m such that 2m = m, Proc. Amer. Math. Soc. 26 (1970) 487-490. (1970) MR0268034
  3. J. D. Halpern P. E. Howard, 10.1090/S0002-9904-1974-13510-X, Bull. Amer. Math. Soc. 80 (1974) 584-586. (1974) MR0329890DOI10.1090/S0002-9904-1974-13510-X
  4. T. Jech, Eine Bemerkung zum Auswahlaxiom, Časopis Pěst. Mat. 93 (1968), 30-31. (1968) Zbl0167.27402MR0233706
  5. T. Jech, The Axiom of Choice, Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973. (1973) Zbl0259.02052MR0396271
  6. T. Jech A. Sochor, Applications of the Θ -model, Bull. Acad. Polon. Sci. 16 (1966) 351-355. (1966) MR0228337
  7. A. Levy, The independence of various definitions of finiteness, Fund. Math. XLVI (1958) 1-13. (1958) Zbl0089.00702MR0098671
  8. A. Levy, Basic Set Theory. Ω Perspectives in Mathematical Logic, Springer-Verlag 1979. (1979) MR0533962
  9. A. R. D. Mathias, 10.1007/BF02025889, Periodica Math. Hungarica 10 (1979) 109-175. (1979) MR0539225DOI10.1007/BF02025889
  10. G. Sageev, 10.1016/0003-4843(75)90002-9, Ann. Math. Logic 8(1975) 1-184. (1975) Zbl0306.02060MR0366668DOI10.1016/0003-4843(75)90002-9
  11. G. Sageev, A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic, To appear. 
  12. W. Sierpinski, Cardinal and ordinal numbers, PWN, Warszawa 1958. (1958) Zbl0083.26803MR0095787
  13. L. Spišiak, Definitions of finiteness, To appear. 
  14. A. Tarski, 10.4064/fm-5-1-147-154, Fund. Math. 5 (1924) 147-154. (1924) DOI10.4064/fm-5-1-147-154
  15. A. Tarski, 10.4064/fm-6-1-45-95, Fund. Math. 6 (1924) 45-95. (1924) DOI10.4064/fm-6-1-45-95
  16. J. Truss, Classes of Dedekind finite cardinals, Fund. Math. To appear. Zbl0292.02049MR0469760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.