Dependences between definitions of finiteness
Ladislav Spišiak; Peter Vojtáš
Czechoslovak Mathematical Journal (1988)
- Volume: 38, Issue: 3, page 389-397
- ISSN: 0011-4642
Access Full Article
topHow to cite
topSpišiak, Ladislav, and Vojtáš, Peter. "Dependences between definitions of finiteness." Czechoslovak Mathematical Journal 38.3 (1988): 389-397. <http://eudml.org/doc/13713>.
@article{Spišiak1988,
author = {Spišiak, Ladislav, Vojtáš, Peter},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite set; finiteness},
language = {eng},
number = {3},
pages = {389-397},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dependences between definitions of finiteness},
url = {http://eudml.org/doc/13713},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Spišiak, Ladislav
AU - Vojtáš, Peter
TI - Dependences between definitions of finiteness
JO - Czechoslovak Mathematical Journal
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 3
SP - 389
EP - 397
LA - eng
KW - finite set; finiteness
UR - http://eudml.org/doc/13713
ER -
References
top- A. Blass, 10.1090/conm/031/763890, In J. E. Baumgartner, D. A. Martin, S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 31 (1984) 31 - 33. (1984) Zbl0557.03030MR0763890DOI10.1090/conm/031/763890
- J. D. Halpern P. E. Howard, Cardinals m such that 2m = m, Proc. Amer. Math. Soc. 26 (1970) 487-490. (1970) MR0268034
- J. D. Halpern P. E. Howard, 10.1090/S0002-9904-1974-13510-X, Bull. Amer. Math. Soc. 80 (1974) 584-586. (1974) MR0329890DOI10.1090/S0002-9904-1974-13510-X
- T. Jech, Eine Bemerkung zum Auswahlaxiom, Časopis Pěst. Mat. 93 (1968), 30-31. (1968) Zbl0167.27402MR0233706
- T. Jech, The Axiom of Choice, Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973. (1973) Zbl0259.02052MR0396271
- T. Jech A. Sochor, Applications of the -model, Bull. Acad. Polon. Sci. 16 (1966) 351-355. (1966) MR0228337
- A. Levy, The independence of various definitions of finiteness, Fund. Math. XLVI (1958) 1-13. (1958) Zbl0089.00702MR0098671
- A. Levy, Basic Set Theory. Perspectives in Mathematical Logic, Springer-Verlag 1979. (1979) MR0533962
- A. R. D. Mathias, 10.1007/BF02025889, Periodica Math. Hungarica 10 (1979) 109-175. (1979) MR0539225DOI10.1007/BF02025889
- G. Sageev, 10.1016/0003-4843(75)90002-9, Ann. Math. Logic 8(1975) 1-184. (1975) Zbl0306.02060MR0366668DOI10.1016/0003-4843(75)90002-9
- G. Sageev, A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic, To appear.
- W. Sierpinski, Cardinal and ordinal numbers, PWN, Warszawa 1958. (1958) Zbl0083.26803MR0095787
- L. Spišiak, Definitions of finiteness, To appear.
- A. Tarski, 10.4064/fm-5-1-147-154, Fund. Math. 5 (1924) 147-154. (1924) DOI10.4064/fm-5-1-147-154
- A. Tarski, 10.4064/fm-6-1-45-95, Fund. Math. 6 (1924) 45-95. (1924) DOI10.4064/fm-6-1-45-95
- J. Truss, Classes of Dedekind finite cardinals, Fund. Math. To appear. Zbl0292.02049MR0469760
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.